咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 5 篇 电气工程
    • 5 篇 计算机科学与技术...
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
    • 1 篇 软件工程
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 地球物理学

主题

  • 8 篇 multiclass image...
  • 2 篇 image classifica...
  • 2 篇 learning (artifi...
  • 2 篇 training
  • 1 篇 genetic programm...
  • 1 篇 support vector m...
  • 1 篇 deep learning
  • 1 篇 fisher discrimin...
  • 1 篇 biorthogonal wav...
  • 1 篇 computer vision ...
  • 1 篇 computer archite...
  • 1 篇 active learning ...
  • 1 篇 quantum convolut...
  • 1 篇 ai approaches to...
  • 1 篇 support vector m...
  • 1 篇 neural networks
  • 1 篇 mco method
  • 1 篇 convolutional ne...
  • 1 篇 unlabeled images...
  • 1 篇 quantum filter

机构

  • 1 篇 ocean univ china...
  • 1 篇 jiangnan univ sc...
  • 1 篇 ocean univ china...
  • 1 篇 victoria univ we...
  • 1 篇 nanjing univ sci...
  • 1 篇 epson res & dev ...
  • 1 篇 idaho state univ...
  • 1 篇 univ surrey ctr ...
  • 1 篇 univ trento dept...
  • 1 篇 inst. of intell....
  • 1 篇 univ allahabad d...
  • 1 篇 nec labs china p...

作者

  • 1 篇 li yanan
  • 1 篇 jin zhong
  • 1 篇 chen zhe
  • 1 篇 khare ashish
  • 1 篇 li jiaxin
  • 1 篇 prakash om
  • 1 篇 singh abhishek
  • 1 篇 gu yongjian
  • 1 篇 shi shangshang
  • 1 篇 shang ruimin
  • 1 篇 bruzzone lorenzo
  • 1 篇 yujie shi
  • 1 篇 zhengwei cui
  • 1 篇 wu xiao-jun
  • 1 篇 chiu steve c.
  • 1 篇 wang jinjun
  • 1 篇 srivastava rajne...
  • 1 篇 zhang mengjie
  • 1 篇 wang zhimin
  • 1 篇 gong yihong

语言

  • 8 篇 英文
检索条件"主题词=multiclass image classification"
8 条 记 录,以下是1-10 订阅
排序:
multiclass image classification using Multiscale Biorthogonal Wavelet Transform
Multiclass Image Classification using Multiscale Biorthogona...
收藏 引用
IEEE 2nd International Conference on image Information Processing (ICIIP)
作者: Prakash, Om Khare, Manish Srivastava, Rajneesh Kumar Khare, Ashish Univ Allahabad Dept Elect & Commun Allahabad 211002 Uttar Pradesh India
image classification is an important problem because of its applications in many fields like shape analysis, object tracking, image retrieval etc. Many techniques have been proposed in literature for classification of... 详细信息
来源: 评论
Quantum convolutional neural networks for multiclass image classification
收藏 引用
QUANTUM INFORMATION PROCESSING 2024年 第5期23卷 1-16页
作者: Shi, Shangshang Wang, Zhimin Li, Jiaxin Li, Yanan Shang, Ruimin Zhong, Guoqiang Gu, Yongjian Ocean Univ China Fac Informat Sci & Engn Qingdao 266100 Peoples R China Ocean Univ China Engn Res Ctr Adv Marine Phys Instruments & Equipme Minist Educ Qingdao 266100 Peoples R China
The quantum convolutional neural networks (QCNNs) are emerging as a promising solution for image classification problems on near-term quantum devices. While QCNNs have shown encouraging results in binary classificatio... 详细信息
来源: 评论
Fisher Regularized e-Dragging for image classification
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2023年 第2期15卷 639-650页
作者: Chen, Zhe Wu, Xiao-Jun Kittler, Josef Jiangnan Univ Sch AI & CS Wuxi 214122 Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH England
Discriminative least-squares regression (DLSR) has been shown to achieve promising performance in multiclass image classification tasks. Its key idea is to force the regression labels of different classes to move in o... 详细信息
来源: 评论
Active learning combining uncertainty and diversity for multi-class image classification
收藏 引用
IET COMPUTER VISION 2015年 第3期9卷 400-407页
作者: Gu, Yingjie Jin, Zhong Chiu, Steve C. Nanjing Univ Sci & Technol Dept Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Idaho State Univ Dept Elect Engn Pocatello ID 83209 USA
In computer vision and pattern recognition applications, there are usually a vast number of unlabelled data whereas the labelled data are very limited. Active learning is a kind of method that selects the most represe... 详细信息
来源: 评论
Discovering image Semantics in Codebook Derivative Space
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2012年 第4期14卷 986-994页
作者: Wang, Jinjun Gong, Yihong Epson Res & Dev Inc San Jose CA 95131 USA NEC Labs China Beijing 100084 Peoples R China
The sparse coding based approaches for image recognition have recently shown improved performance than traditional bag-of-features technique. Due to high dimensionality of the image descriptor space, existing systems ... 详细信息
来源: 评论
multiclass Object classification for Computer Vision using Linear Genetic Programming
Multiclass Object Classification for Computer Vision using L...
收藏 引用
24th International Conference image and Vision Computing New Zealand
作者: Downey, Carlton Zhang, Mengjie Victoria Univ Wellington Sch Engn & Comp Sci Wellington New Zealand
multiclass classification problems arise naturally in many tasks in computer vision;typical examples include image segmentation and letter recognition. These are among some of the most challenging and important tasks ... 详细信息
来源: 评论
Mono- and Dual-Regulated Contractive-Expansive-Contractive Deep Convolutional Networks for classification of Multispectral Remote Sensing images
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2022年 19卷
作者: Singh, Abhishek Bruzzone, Lorenzo Univ Trento Dept Informat Engn & Comp Sci I-38123 Trento Italy
Deep convolutional neural networks (CNNs) are the state-of-the-art methods in the domain of classification of remote sensing (RS) data. However, traditional CNN models suffer from huge computational costs in learning ... 详细信息
来源: 评论
Maximum classification Optimization-based Active Learning for image classification
Maximum Classification Optimization-based Active Learning fo...
收藏 引用
International Congress on image and Signal Processing
作者: Zhengwei Cui Xiaoming Chen Jian Wu Victor S. Sheng Yujie Shi Inst. of Intell. Inf. Process. & Applic. Soochow Univ. Suzhou China
Traditional multi-class image classification needs a large number of training samples for building a classifier model. However, it is very time-consuming and costly to obtain labels for a large number of training samp... 详细信息
来源: 评论