咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 wet clutch
  • 1 篇 industrial contr...
  • 1 篇 hypercubes
  • 1 篇 hypercube
  • 1 篇 algorithms
  • 1 篇 ucb algorithm
  • 1 篇 electronic mail
  • 1 篇 pareto ucb1 algo...
  • 1 篇 cloning vectors
  • 1 篇 real-world stoch...
  • 1 篇 vectors
  • 1 篇 bi-objective exa...
  • 1 篇 multiobjective o...
  • 1 篇 wet clutches
  • 1 篇 kullback-leibler...
  • 1 篇 algorithm design...
  • 1 篇 multiobjective m...
  • 1 篇 pareto upper con...
  • 1 篇 markov chain
  • 1 篇 learning (artifi...

机构

  • 1 篇 vrije univ bruss...

作者

  • 1 篇 nowe ann
  • 1 篇 drugan madalina ...
  • 1 篇 manderick bernar...

语言

  • 1 篇 英文
检索条件"主题词=multiobjective multiarmed bandit algorithm"
1 条 记 录,以下是1-10 订阅
排序:
Pareto Upper Confidence Bounds algorithms: an empirical study
Pareto Upper Confidence Bounds algorithms: an empirical stud...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)
作者: Drugan, Madalina M. Nowe, Ann Manderick, Bernard Vrije Univ Brussel Artificial Intelligence Lab Ixelles Belgium
Many real-world stochastic environments are inherently multi-objective environments with conflicting objectives. The multi-objective multi-armed bandits (MOMAB) are extensions of the classical, i.e. single objective, ... 详细信息
来源: 评论