咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 21 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 航空宇航科学与技...
  • 26 篇 理学
    • 19 篇 数学
    • 4 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 15 篇 管理学
    • 15 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 1 篇 应用经济学

主题

  • 42 篇 multiobjective o...
  • 3 篇 efficient (paret...
  • 3 篇 many-objective o...
  • 3 篇 pareto optimisat...
  • 3 篇 constraint quali...
  • 3 篇 evolutionary com...
  • 2 篇 preference infor...
  • 2 篇 pareto optimal p...
  • 2 篇 multiobjective e...
  • 2 篇 interactive meth...
  • 2 篇 nonessential obj...
  • 2 篇 optimization
  • 2 篇 scalable test su...
  • 2 篇 competitive coev...
  • 2 篇 evolutionary alg...
  • 2 篇 duality
  • 2 篇 evolutionary alg...
  • 2 篇 lagrange multipl...
  • 2 篇 learning (artifi...
  • 2 篇 evolutionary mul...

机构

  • 2 篇 bialystok tech u...
  • 2 篇 univ jyvaskyla f...
  • 1 篇 univ basque coun...
  • 1 篇 univ isfahan dep...
  • 1 篇 chosun univ dept...
  • 1 篇 banaras hindu un...
  • 1 篇 jinan univ sch i...
  • 1 篇 univ fed santa m...
  • 1 篇 southern univ sc...
  • 1 篇 univ fed parana ...
  • 1 篇 univ birmingham ...
  • 1 篇 univ elect sci &...
  • 1 篇 pablo olavide un...
  • 1 篇 bialystok tech u...
  • 1 篇 west virginia un...
  • 1 篇 univ pavia dept ...
  • 1 篇 kaohsiung med un...
  • 1 篇 beijing univ tec...
  • 1 篇 bohai univ dept ...
  • 1 篇 konku univ dept ...

作者

  • 3 篇 mishra s. k.
  • 3 篇 nojima yusuke
  • 3 篇 ishibuchi hisao
  • 2 篇 maurya j. k.
  • 2 篇 masuyama naoki
  • 2 篇 matsumoto takash...
  • 2 篇 miettinen kaisa
  • 2 篇 malinowska a. b.
  • 2 篇 afsar bekir
  • 1 篇 paciello julio
  • 1 篇 giorgi giorgio
  • 1 篇 budiyono agus
  • 1 篇 recchioni mc
  • 1 篇 zou juan
  • 1 篇 akmeliawati rini
  • 1 篇 ghosh debdas
  • 1 篇 nakayama h
  • 1 篇 yang cuili
  • 1 篇 nguyen van tuyen
  • 1 篇 dandois celine

语言

  • 39 篇 英文
  • 2 篇 其他
  • 1 篇 西班牙文
检索条件"主题词=multiobjective optimization problems"
42 条 记 录,以下是31-40 订阅
排序:
A Multi-Objective Evolutionary Concept Learner
A Multi-Objective Evolutionary Concept Learner
收藏 引用
2010 IEEE World Congress on Computational Intelligence
作者: Dandois, Celine Divina, Federico Vanhoof, Wim Univ Namur Fac Comp Sci Rue Grandgagnage 21 B-5000 Namur Belgium Pablo Olavide Univ BIGS E-41013 Seville Spain
Learning concept descriptions from data is a challenging, and inherently multi-objective, optimization problem. The model induced by the learner has to be complete, consistent and easily interpretable, and producing i... 详细信息
来源: 评论
R2-BEAN: R2 Indicator Based Evolutionary Algorithm for Noisy multiobjective optimization  7
R2-BEAN: R2 Indicator Based Evolutionary Algorithm for Noisy...
收藏 引用
7th IEEE Symposium on Computational Intelligence for Security and Defense Applications (IEEE-CISDA)
作者: Phan, Dung H. Suzuki, Junichi Univ Massachusetts Dept Comp Sci Boston MA 02125 USA
This paper proposes and evaluates an indicator based and noise-aware dominance operator for evolutionary algorithms to solve the multiobjective optimization problems (MOPs) that contain noise in their objective functi... 详细信息
来源: 评论
Dini and Hadamard directional derivatives in multiobjective optimization: an overview of some results
收藏 引用
DECISIONS IN ECONOMICS AND FINANCE 2023年 第2期46卷 355-377页
作者: Giorgi, Giorgio Jimenez, Bienvenido Novo, Vicente Univ Pavia Dept Econ & Management Via S Felice 5 I-27100 Pavia Italy Univ Nacl Educ Distancia UNED Dept Matemat Aplicada ETSI Ind Calle Juan Rosal 12 Madrid 28040 Spain
An overview is given on the use of Dini and Hadamard directional derivatives in various types of multiobjective optimization problems. Necessary optimality conditions are considered for a problem with an abstract cons... 详细信息
来源: 评论
Automated Discovery of Vital Knowledge from Pareto-optimal Solutions: First Results from Engineering Design
Automated Discovery of Vital Knowledge from Pareto-optimal S...
收藏 引用
2010 IEEE World Congress on Computational Intelligence
作者: Bandaru, Sunith Deb, Kalyanmoy Indian Inst Technol Dept Mech Engn Kanpur 208016 Uttar Pradesh India
Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtain... 详细信息
来源: 评论
Performance Comparison of multiobjective Evolutionary Algorithms on problems with Partially Different Properties from Popular Test Suites
Performance Comparison of Multiobjective Evolutionary Algori...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Matsumoto, Takashi Masuyama, Naoki Nojima, Yusuke Ishibuchi, Hisao Osaka Prefecture Univ Dept Comp Sci & Intelligent Syst Sakai Osaka 5998531 Japan Southern Univ Sci & Technol SUSTech Dept Comp Sci & Engn Shenzhen Peoples R China
A multiobjective Evolutionary Algorithm (MOEA) is one of the effective approaches for solving multiobjective optimization problems (MOPs). The performance of MOEAs is evaluated mainly by scalable MOP test suites where... 详细信息
来源: 评论
Balancing Convergence and Diversity in multiobjective Immune Algorithm  12
Balancing Convergence and Diversity in Multiobjective Immune...
收藏 引用
12th International Conference on Advanced Computational Intelligence (ICACI)
作者: Li, Lingjie Lin, Wu Lin, Qiuzhen Ming, Zhong Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China
Recently, multiobjective immune algorithms (MOIAs) become popular, which are designed for multiobjective optimization problems (MOPs). However, most existing MOIAs put more attention on maintaining diversity as the us... 详细信息
来源: 评论
Many-Objective Test problems to Visually Examine the Behavior of multiobjective Evolution in a Decision Space
Many-Objective Test Problems to Visually Examine the Behavio...
收藏 引用
11th International Conference on Parallel Problem Solving from Nature
作者: Ishibuchi, Hisao Hitotsuyanagi, Yasuhiro Tsukamoto, Noritaka Nojima, Yusuke Osaka Prefecture Univ Dept Comp Sci & Intelligent Syst Grad Sch Engn Naka Ku Osaka 5998531 Japan
Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO ... 详细信息
来源: 评论
multiobjective approximate gradient projection method for constrained vector optimization: Sequential optimality conditions without constraint qualifications
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2022年 410卷 114122-114122页
作者: Lai, Kin Keung Maurya, J. K. Mishra, S. K. Jinan Univ Sch Intelligent Syst Sci & Engn Zhuhai Campus Zhuhai Peoples R China Kashi Naresh Govt Post Grad Coll Gyanpur Bhadohi 221304 India Banaras Hindu Univ Inst Sci Dept Math Varanasi 221005 India
In this paper, we establish multiobjective approximate gradient projection (MAGP) and linear multiobjective approximate gradient projection (LMAGP) sequential optimality conditions without constraint qualification for... 详细信息
来源: 评论
Assessing the Performance of Interactive multiobjective optimization Methods: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2021年 第4期54卷 85-85页
作者: Afsar, Bekir Miettinen, Kaisa Ruiz, Francisco Univ Jyvaskyla Fac Informat Technol POB 35 Agora FI-40014 Jyvaskyla Finland Univ Malaga Dept Appl Econ Math Fac Comercio & Gest Campus Teatinos Malaga 29071 Spain
Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same... 详细信息
来源: 评论
multiobjective ensemble surrogate-based optimization algorithm for groundwater optimization designs
收藏 引用
JOURNAL OF HYDROLOGY 2022年 第PartB期612卷
作者: Wu, Mengtian Wang, Lingling Xu, Jin Wang, Zhe Hu, Pengjie Tang, Hongwu Hohai Univ State Key Lab Hydrol Water Resources & Hydraul Eng Nanjing Peoples R China Hohai Univ Coll Water Conservancy & Hydropower Engn Nanjing Peoples R China Hohai Univ Coll Agr Sci & Engn Nanjing Peoples R China Hohai Univ Coll Hydrol & Water Resources Nanjing Peoples R China
Simulation technique is an increasingly focused method for conveniently evaluating a solution or scenario in the field of groundwater. However, traditional evolutionary algorithms require at least thousands of simulat... 详细信息
来源: 评论