To predict the sound radiation of structures, both a structural problem and an acoustic problem have to be solved. In case of thin structures and dense fluids, a strong coupling scheme between the two problems is esse...
详细信息
To predict the sound radiation of structures, both a structural problem and an acoustic problem have to be solved. In case of thin structures and dense fluids, a strong coupling scheme between the two problems is essential, since the feedback of the acoustic pressure onto the structure is not negligible. In this paper, the structural part is modeled with the finite element (FE) method. An interface to a commercial FE package is set up to import the structural matrices. The exterior acoustic problem is efficiently modeled with the Galerkin boundaryelement (BE) method. To overcome the well-known drawback of fully populated system matrices, the fast multipolemethod is applied. Different coupling formulations are investigated. They are either based on the Burton-Miller approach or use a mortar coupling scheme. For all cases, iterative solvers with different preconditioners are used. The efficiency with respect to their memory consumption and computation time is compared for a simple model problem. At the end of the paper, a more complex structure is simulated. Copyright (c) 2008 John Wiley & Sons, Ltd.
This paper presents a new mathematical model for the highly nonlinear problem of frictional con- tact. A programming model, multipole boundary element method (BEM), was developed for 3-D elastic con- tact with frict...
详细信息
This paper presents a new mathematical model for the highly nonlinear problem of frictional con- tact. A programming model, multipole boundary element method (BEM), was developed for 3-D elastic con- tact with friction to replace the Monte Carlo method. A numerical example shows that the optimization pro- gramming model for the point-to-surface contact with friction and the fast optimization generalized minimal residual algorithm (GMRES(m)) significantly improve the analysis of such problems relative to the conven- tional BEM.
暂无评论