咨询与建议

限定检索结果

文献类型

  • 18 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 13 篇 电气工程
    • 9 篇 测绘科学与技术
    • 5 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
  • 11 篇 理学
    • 9 篇 地球物理学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 生物学
  • 10 篇 医学
    • 10 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 19 篇 multiscale objec...
  • 8 篇 object detection
  • 6 篇 feature extracti...
  • 5 篇 detectors
  • 4 篇 transformer
  • 4 篇 remote sensing i...
  • 3 篇 task analysis
  • 3 篇 semantics
  • 3 篇 small object det...
  • 3 篇 training
  • 2 篇 semantic informa...
  • 2 篇 deep learning
  • 2 篇 proposals
  • 2 篇 transformers
  • 2 篇 convolution
  • 2 篇 feature pyramid
  • 2 篇 yolov8
  • 2 篇 standards
  • 1 篇 subpixel convolu...
  • 1 篇 adaptive systems

机构

  • 1 篇 wuhan univ dept ...
  • 1 篇 univ eastern fin...
  • 1 篇 beijing inst tec...
  • 1 篇 australian natl ...
  • 1 篇 tongji univ coll...
  • 1 篇 mississippi stat...
  • 1 篇 shanghai inst in...
  • 1 篇 china univ min &...
  • 1 篇 leqi technol peo...
  • 1 篇 univ grenoble al...
  • 1 篇 mississippi stat...
  • 1 篇 yeungnam univ de...
  • 1 篇 yunnan univ yunn...
  • 1 篇 beijing inst tec...
  • 1 篇 northwestern pol...
  • 1 篇 univ iceland fac...
  • 1 篇 tongji univ shan...
  • 1 篇 yunnan univ peop...
  • 1 篇 changan univ dep...
  • 1 篇 beijing univ civ...

作者

  • 2 篇 du qian
  • 2 篇 gao tao
  • 2 篇 niu qianqian
  • 2 篇 chen ting
  • 1 篇 yan wei qi
  • 1 篇 feng yongjiu
  • 1 篇 li peng
  • 1 篇 nguyen minh
  • 1 篇 ouyang yu
  • 1 篇 shamsolmoali pou...
  • 1 篇 qin wenyang
  • 1 篇 zhu shengyu
  • 1 篇 liu zixiang
  • 1 篇 guo yiyou
  • 1 篇 zhao boya
  • 1 篇 feng yanling
  • 1 篇 gao xiaozhi
  • 1 篇 tong xiaohua
  • 1 篇 huo lianzhi
  • 1 篇 wang guanbo

语言

  • 19 篇 英文
检索条件"主题词=multiscale object detection"
19 条 记 录,以下是1-10 订阅
排序:
multiscale object detection based on channel and data enhancement at construction sites
收藏 引用
MULTIMEDIA SYSTEMS 2023年 第1期29卷 49-58页
作者: Wang, Hengyou Song, Yanfei Huo, Lianzhi Chen, Linlin He, Qiang Beijing Univ Civil Engn & Architecture Sch Sci Beijing 100044 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Beijing Univ Civil Engn & Architecture Inst Big Data Modeling & Technol Beijing 100044 Peoples R China
object detection based on computer vision techniques plays an important role in the safety monitoring of large-scene construction sites. However, current object detection algorithms typically have poor performance on ... 详细信息
来源: 评论
multiscale object detection in Remote Sensing Images Combined with Multi-Receptive-Field Features and Relation-Connected Attention
收藏 引用
REMOTE SENSING 2022年 第2期14卷 427页
作者: Liu, Jiahang Yang, Donghao Hu, Fei Nanjing Univ Aeronut & Astronaut Coll Astronaut Nanjing 210016 Peoples R China
object detection is an important task of remote sensing applications. In recent years, with the development of deep convolutional neural networks, object detection in remote sensing images has made great improvements.... 详细信息
来源: 评论
An Anchor-Free Network With Density Map and Attention Mechanism for multiscale object detection in Aerial Images
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2022年 19卷 1页
作者: Guo, Yiyou Tong, Xiaohua Xu, Xiong Liu, Sicong Feng, Yongjiu Xie, Huan Tongji Univ Coll Surveying & Geoinformat Shanghai 200092 Peoples R China Tongji Univ Shanghai Key Lab Space Mapping & Remote Sensing Shanghai 200092 Peoples R China Shanghai Inst Intelligent Sci & Technol Shanghai 201203 Peoples R China
Accurate detection of the multiple classes in aerial images has become possible with the use of anchor-based object detectors. However, anchor-based object detectors place a large number of preset anchors on images an... 详细信息
来源: 评论
Dual-bottleneck feature pyramid network for multiscale object detection
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2022年 第1期31卷 013009-013009页
作者: Chen, Suting Ma, Wenyan Zhang, Liangchen Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Meteorol Observat & Informat Proc Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Jiangsu Collaborat Innovat Ctr Atmospher Environm Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Wuxi Inst Technol NUIST WIT Nanjing Peoples R China LEQI Technol Shenzhen Peoples R China
multiscale object detection is a challenging task due to the multiscale and multi-classification nature of different objects. Convolutional neural networks are commonly used to extract the features. However, continuou... 详细信息
来源: 评论
ABNet: Adaptive Balanced Network for multiscale object detection in Remote Sensing Imagery
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Liu, Yanfeng Li, Qiang Yuan, Yuan Du, Qian Wang, Qi Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Northwestern Polytech Univ Sch Artificial Intelligence Opt & Elect iOPEN Xian 710072 Peoples R China Mississippi State Univ Dept Elect & Comp Engn Starkville MS 39759 USA
Benefiting from the development of convolutional neural networks (CNNs), many excellent algorithms for object detection have been presented. Remote sensing object detection (RSOD) is a challenging task mainly due to: ... 详细信息
来源: 评论
Attention-Free Global multiscale Fusion Network for Remote Sensing object detection
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1页
作者: Gao, Tao Li, Ziqi Wen, Yuanbo Chen, Ting Niu, Qianqian Liu, Zixiang Changan Univ Sch Informat Engn Xian 710064 Peoples R China
Remote sensing object detection (RSOD) encounters challenges in complex backgrounds and small object detection, which are interconnected and unable to address separately. To this end, we propose an attention-free glob... 详细信息
来源: 评论
multiscale Semantic Guidance Network for object detection in VHR Remote Sensing Images
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2022年 19卷 1页
作者: Zhu, Shengyu Zhang, Junping Liang, Xuejian Guo, Qingle Harbin Inst Technol Dept Informat Engn Harbin 150001 Peoples R China
With the development of convolutional neural network (CNN), many CNN-based object detection methods have made a remarkable success in very high-resolution (VHR) remote sensing images (RSIs). However, the standard conv... 详细信息
来源: 评论
MStrans: multiscale Vision Transformer for Aerial objects detection
收藏 引用
IEEE ACCESS 2022年 10卷 75971-75985页
作者: Lu, Guanlin He, Xiaohui Wang, Qiang Shao, Faming Wang, Jinkang Hao, Likai PLA Army Engn Univ Dept Mech Engn Coll Field Engn Nanjing 210007 Peoples R China
Detecting objects in aerial images is a challenging task due to the large-scale variations and arbitrary orientations with tiny instances. A new multi-scale transformer-based aerial objects detector called MStrans is ... 详细信息
来源: 评论
Improving Faster R-CNN Framework for multiscale Chinese Character detection and Localization
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2020年 第7期E103D卷 1777-1781页
作者: Kim, Minseong Choi, Hyun-Chul Yeungnam Univ Dept Elect Engn 280 Daehakro Gyongsan 38541 Gyeongbuk South Korea
Faster R-CNN uses a region proposal network which consists of a single scale convolution filter and fully connected networks to localize detected regions. However, using a single scale filter is not enough to detect f... 详细信息
来源: 评论
PCViT: A Pyramid Convolutional Vision Transformer Detector for object detection in Remote-Sensing Imagery
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷 1页
作者: Li, Jiaojiao Tian, Penghao Song, Rui Xu, Haitao Li, Yunsong Du, Qian Xidian Univ State Key Lab Integrated Serv Network Xian 710071 Peoples R China Chinese Acad Sci Natl Space Sci Ctr Beijing 100190 Peoples R China Mississippi State Univ Dept Elect & Comp Engn Starkville MS 39762 USA
Remote-sensing object detection (RSOD) is a fundamental and valuable task in Earth monitoring. However, remote-sensing images (RSIs) are typically acquired from a bird's eye perspective, resulting in intrinsic pro... 详细信息
来源: 评论