咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学

主题

  • 6 篇 nearest codeword...
  • 4 篇 closest vector p...
  • 2 篇 dense instances
  • 2 篇 approximation al...
  • 2 篇 minimum constrai...
  • 2 篇 coding theory
  • 2 篇 point lattices
  • 2 篇 np-hardness
  • 2 篇 preprocessing co...
  • 2 篇 approximation pr...
  • 1 篇 lattices
  • 1 篇 learning halfspa...
  • 1 篇 hardness of appr...
  • 1 篇 shortest vector ...
  • 1 篇 projection games...
  • 1 篇 hypergraph sampl...
  • 1 篇 polynomial time ...
  • 1 篇 approximation ra...
  • 1 篇 inapproximabilit...
  • 1 篇 linear time appr...

机构

  • 2 篇 weizmann inst sc...
  • 2 篇 univ calif san d...
  • 1 篇 nyu ny 10003 usa
  • 1 篇 univ paris 09 la...
  • 1 篇 univ waterloo de...
  • 1 篇 univ bonn dept c...
  • 1 篇 univ waterloo in...
  • 1 篇 univ paris 11 cn...
  • 1 篇 microsoft res ba...
  • 1 篇 univ bonn dept c...

作者

  • 2 篇 micciancio d
  • 2 篇 feige u
  • 1 篇 bazgan c
  • 1 篇 de la vega wf
  • 1 篇 mukhopadhyay pri...
  • 1 篇 popat preyas
  • 1 篇 karpinski m
  • 1 篇 vishnoi nisheeth...
  • 1 篇 khot subhash a.
  • 1 篇 schudy warren
  • 1 篇 karpinski marek

语言

  • 6 篇 英文
检索条件"主题词=nearest codeword problem"
6 条 记 录,以下是1-10 订阅
排序:
The Projection Games Conjecture and the hardness of approximation of super-SAT and related problems
收藏 引用
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 2022年 123卷 186-201页
作者: Mukhopadhyay, Priyanka Univ Waterloo Inst Quantum Comp 200 Univ Ave West Waterloo ON N2L 3G1 Canada Univ Waterloo Dept Combinator & Optimizat 200 Univ Ave West Waterloo ON N2L 3G1 Canada
The Super-SAT (SSAT) problem was introduced in [1,2] to prove the NP-hardness of approximation of two popular lattice problems -Shortest Vector problem and Closest Vector problem. SSAT is conjectured to be NP-hard to ... 详细信息
来源: 评论
2log1-ε n Hardness for the Closest Vector problem with Preprocessing  12
2<SUP>log1-ε</SUP> <i><SUP>n</SUP></i> Hardness for the Clo...
收藏 引用
44th ACM Annual Symposium on Theory of Computing (STOC)
作者: Khot, Subhash A. Popat, Preyas Vishnoi, Nisheeth K. NYU New York NY 10003 USA Microsoft Res Bangalore Karnataka India
We prove that for an arbitrarily small constant epsilon > 0;assuming NP not subset of DTIME(2(logO(1/epsilon) n)), the preprocessing versions of the closest vector problem and the nearest codeword problem are hard ... 详细信息
来源: 评论
Linear Time Approximation Schemes for the Gale-Berlekamp Game and Related Minimization problems
Linear Time Approximation Schemes for the Gale-Berlekamp Gam...
收藏 引用
41st Annual ACM Symposium on Theory of Computing
作者: Karpinski, Marek Schudy, Warren Univ Bonn Dept Comp Sci D-5300 Bonn Germany
We design a linear time approximation scheme for the Gale-Berlekamp Switching Game and generalize it. to a wider class of dense fragile minimization problems including the nearest codeword problem (NCP) and Unique Gam... 详细信息
来源: 评论
The inapproximability of lattice and coding problems with preprocessing
收藏 引用
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 2004年 第1期69卷 45-67页
作者: Feige, U Micciancio, D Univ Calif San Diego Dept Comp Sci & Engn La Jolla CA 92093 USA Weizmann Inst Sci IL-76100 Rehovot Israel
We prove that the closest vector problem with preprocessing (CVPP) is NP-hardto approximate within any factor less than (5/3)~(1/2). More specifically, we show that thereexists a reduction from an NP-hard problem to t... 详细信息
来源: 评论
The inapproximability of lattice and coding problems with preprocessing
The inapproximability of lattice and coding problems with pr...
收藏 引用
17th IEEE Annual Conference on Computational Complexity
作者: Feige, U Micciancio, D Univ Calif San Diego Dept Comp Sci & Engn La Jolla CA 92093 USA Weizmann Inst Sci IL-76100 Rehovot Israel
We prove that the closest vector problem with preprocessing (CVPP) is NP-hard to approximate within any factor less than √5/3. More specifically, we show that there exists a reduction from an NP-hard problem to the a... 详细信息
来源: 评论
Polynomial time approximation schemes for dense instances of minimum constraint satisfaction
收藏 引用
RANDOM STRUCTURES & ALGORITHMS 2003年 第1期23卷 73-91页
作者: Bazgan, C de la Vega, WF Karpinski, M Univ Paris 11 CNRS LRI F-91405 Orsay France Univ Paris 09 LAMSADE F-75775 Paris France Univ Bonn Dept Comp Sci D-53117 Bonn Germany
It is known that large fragments of the class of dense Minimum Constraint Satisfaction (MIN-CSP) problems do not have polynomial time approximation schemes (PTASs) contrary to their Maximum Constraint Satisfaction ana... 详细信息
来源: 评论