咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 控制科学与工程

主题

  • 3 篇 nearest-neighbor...
  • 2 篇 adversarial mach...
  • 2 篇 strategic classi...
  • 2 篇 abstention
  • 1 篇 prototype contro...
  • 1 篇 algorithm design
  • 1 篇 genetic algorith...
  • 1 篇 data-driven algo...
  • 1 篇 data-driven

机构

  • 1 篇 carnegie mellon ...
  • 1 篇 toyota technolog...
  • 1 篇 carnegie mellon ...
  • 1 篇 toyota technol i...
  • 1 篇 university of wa...
  • 1 篇 univ waterloo 20...
  • 1 篇 university of th...

作者

  • 1 篇 zhang hongyang
  • 1 篇 avrim blum
  • 1 篇 maria-florina ba...
  • 1 篇 dravyans dravyan...
  • 1 篇 hongyang zhang
  • 1 篇 dravyansh sharma
  • 1 篇 huang r
  • 1 篇 avrim avrim blum
  • 1 篇 fogarty tc
  • 1 篇 balcan maria-flo...

语言

  • 3 篇 英文
检索条件"主题词=nearest-neighbor algorithms"
3 条 记 录,以下是1-10 订阅
排序:
An Analysis of Robustness of Non-Lipschitz Networks
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2023年 第1期24卷 1-43页
作者: Balcan, Maria-Florina Avrim, Avrim Blum Dravyans, Dravyansh Sharma Zhang, Hongyang Carnegie Mellon Univ 5000 Forbes Ave Pittsburgh PA 15213 USA Toyota Technol Inst Chicago 6045 S Kenwood Ave Chicago IL 60637 USA Univ Waterloo 200 Univ Ave Waterloo ON N2L 3G1 Canada
Despite significant advances, deep networks remain highly susceptible to adversarial attack. One fundamental challenge is that small input perturbations can often produce large movements in the network's final-lay... 详细信息
来源: 评论
EVOLVING PROTOTYPE CONTROL RULES FOR A DYNAMIC SYSTEM
收藏 引用
KNOWLEDGE-BASED SYSTEMS 1994年 第2期7卷 142-145页
作者: FOGARTY, TC HUANG, R University of the West of England Bristol BS16 1QY UK
The genetic algorithm is used for the learning of prototype control rules for a dynamic system. Prototype control rules are point based, but only a limited number of points in the state space with associated control a... 详细信息
来源: 评论
An analysis of robustness of non-Lipschitz networks
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 4548-4590页
作者: Maria-Florina Balcan Avrim Blum Dravyansh Sharma Hongyang Zhang Carnegie Mellon University Pittsburgh PA Toyota Technological Institute at Chicago Chicago IL University of Waterloo Waterloo ON Canada
Despite significant advances, deep networks remain highly susceptible to adversarial attack. One fundamental challenge is that small input perturbations can often produce large movements in the network's final-lay... 详细信息
来源: 评论