咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 95 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 73 篇 计算机科学与技术...
    • 19 篇 电气工程
    • 15 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 石油与天然气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 环境科学与工程(可...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 7 篇 理学
    • 3 篇 生物学
    • 2 篇 数学
    • 2 篇 化学
    • 2 篇 系统科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 95 篇 negative correla...
  • 18 篇 ensemble learnin...
  • 16 篇 neural network e...
  • 15 篇 diversity
  • 13 篇 neural network e...
  • 7 篇 bagging
  • 7 篇 boosting
  • 6 篇 generalization
  • 6 篇 neural networks
  • 6 篇 mixture of exper...
  • 5 篇 ensemble
  • 5 篇 correlation pena...
  • 4 篇 deep learning
  • 4 篇 neural networks ...
  • 4 篇 extreme learning...
  • 3 篇 balanced ensembl...
  • 3 篇 incremental lear...
  • 3 篇 correlation
  • 3 篇 tsk fuzzy classi...
  • 2 篇 error bounds

机构

  • 6 篇 univ aizu sch co...
  • 4 篇 univ birmingham ...
  • 4 篇 univ birmingham ...
  • 3 篇 univ tehran sch ...
  • 3 篇 birjand univ tec...
  • 2 篇 univ loyola anda...
  • 2 篇 school of inform...
  • 2 篇 electrotech lab ...
  • 2 篇 school of comput...
  • 2 篇 univ birmingham ...
  • 2 篇 shahid rajaee te...
  • 2 篇 univ birmingham ...
  • 2 篇 univ aizu sch co...
  • 2 篇 state key labora...
  • 1 篇 univ sci & techn...
  • 1 篇 amirkabir univ t...
  • 1 篇 kuet dept comp s...
  • 1 篇 state grid zheng...
  • 1 篇 islamic azad uni...
  • 1 篇 univ illinois de...

作者

  • 11 篇 yao xin
  • 10 篇 liu yong
  • 5 篇 yong liu
  • 5 篇 chen huanhuan
  • 4 篇 yao x
  • 4 篇 arani seyed ali ...
  • 4 篇 ebrahimpour reza
  • 4 篇 hadavandi esmaei...
  • 3 篇 liu y
  • 3 篇 shamshirband sha...
  • 3 篇 mao zhizhong
  • 3 篇 ding yi
  • 3 篇 murase kazuyuki
  • 3 篇 akhand m. a. h.
  • 3 篇 perales-gonzalez...
  • 3 篇 ding jinliang
  • 3 篇 masoudnia saeed
  • 3 篇 fu xian
  • 2 篇 tang ke
  • 2 篇 qiangfu zhao

语言

  • 88 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"主题词=negative correlation learning"
95 条 记 录,以下是1-10 订阅
排序:
negative correlation learning in the extreme learning machine framework
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2020年 第17期32卷 13805-13823页
作者: Perales-Gonzalez, Carlos Carbonero-Ruz, Mariano Perez-Rodriguez, Javier Becerra-Alonso, David Fernandez-Navarro, Francisco Univ Loyola Andalucia Seville Spain
Extreme learning machine (ELM) has shown to be a suitable algorithm for classification problems. Several ensemble meta-algorithms have been developed in order to generalize the results of ELM models. Ensemble approach... 详细信息
来源: 评论
negative correlation learning in the Estimation of Distribution Algorithms for Combinatorial Optimization
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2013年 第11期E96D卷 2397-2408页
作者: Wattanapornprom, Warin Chongstitvatana, Prabhas Chulalongkorn Univ Fac Engn Dept Comp Engn Bangkok Thailand
This article introduces the Coincidence Algorithm (COIN) to solve several multimodal puzzles. COIN is an algorithm in the category of Estimation of Distribution Algorithms (EDAs) that makes use of probabilistic models... 详细信息
来源: 评论
negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting
收藏 引用
RENEWABLE ENERGY 2020年 156卷 804-819页
作者: Peng, Tian Zhang, Chu Zhou, Jianzhong Nazir, Muhammad Shahzad Huaiyin Inst Technol Coll Automat Huaian 223003 Peoples R China Huazhong Univ Sci & Technol Sch Hydropower & Informat Engn Wuhan 430074 Peoples R China
Accurate and reliable wind speed forecasting is vital in power system scheduling and management. Ensemble techniques are widely employed to enhance wind speed forecasting accuracy. This paper proposes a negative corre... 详细信息
来源: 评论
negative correlation learning approach for T-S fuzzy models
Negative correlation learning approach for T-S fuzzy models
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Cai, YP Sun, XM Jia, PF Tsinghua Univ State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China
In this paper an adaptive approach of achieving a proper model structure in data-driven T-S fuzzy models is proposed. By introducing negative correlation learning in the creation of the fuzzy model, the training error... 详细信息
来源: 评论
Semisupervised negative correlation learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2018年 第11期29卷 5366-5379页
作者: Chen, Huanhuan Jiang, Bingbing Yao, Xin Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230027 Anhui Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Key Lab Computat Intelligence Shenzhen 518055 Peoples R China Univ Birmingham Sch Comp Sci CERCIA Birmingham B15 2TT W Midlands England
negative correlation learning (NCL) is an ensemble learning algorithm that introduces a correlation penalty term to the cost function of each individual ensemble member. Each ensemble member minimizes its mean square ... 详细信息
来源: 评论
Evolutionary ensembles with negative correlation learning
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2000年 第4期4卷 380-387页
作者: Liu, Y Yao, X Higuchi, T Univ Aizu Fukushima 9658580 Japan Univ Birmingham Sch Comp Sci Birmingham B15 2TT W Midlands England Div Comp Sci Electrotech Lab Evolvavble Syst Lab Tsukuba Ibaraki 3058568 Japan
Based on negative correlation learning and evolutionary learning, this brief paper presents evolutionary ensembles with negative correlation learning (EENCL) to address the issues of automatic determination of the num... 详细信息
来源: 评论
Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2011年 第12期35卷 2611-2617页
作者: Hu, Guanghao Mao, Zhizhong He, Dakuo Yang, Fei Northeastern Univ Sch Informat Sci & Engn Shenyang 11004 Peoples R China
For predicting the leaching rate in hydrometallurgical process, it is very necessary to use an accurate mathematical model in leaching process. In this paper, a mechanism model is proposed for description and analysis... 详细信息
来源: 评论
A niching evolutionary algorithm with adaptive negative correlation learning for neural network ensemble
收藏 引用
NEUROCOMPUTING 2017年 247卷 173-182页
作者: Sheng, Weiguo Shan, Pengxiao Chen, Shengyong Liu, Yurong Alsaadi, Fuad E. Hangzhou Normal Univ Dept Comp Sci Hangzhou 310036 Zhejiang Peoples R China Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Zhejiang Peoples R China Tianjin Univ Technol Coll Comp Sci Tianjin 300384 Peoples R China Yangzhou Univ Dept Math Yangzhou 225002 Jiangsu Peoples R China King Abdulaziz Univ Fac Engn Commun Syst & Networks CSN Res Grp Jeddah 21589 Saudi Arabia
This paper proposes a niching evolutionary algorithm with adaptive negative correlation learning, denoted as NEAJNCL, for training the neural network ensemble. In the proposed NEA_ANCL, an adaptive negative correlatio... 详细信息
来源: 评论
Combining features of negative correlation learning with mixture of experts in proposed ensemble methods
收藏 引用
APPLIED SOFT COMPUTING 2012年 第11期12卷 3539-3551页
作者: Masoudnia, Saeed Ebrahimpour, Reza Arani, Seyed Ali Asghar Abbaszadeh Univ Tehran Sch Math Stat & Comp Sci Tehran Iran Shahid Rajaee Teacher Training Univ Dept Elect & Comp Engn Brain & Intelligent Syst Res Lab Tehran Iran
Both theoretical and experimental studies have shown that combining accurate neural networks (NNs) in the ensemble with negative error correlation greatly improves their generalization abilities. negative correlation ... 详细信息
来源: 评论
Design of an ensemble neural network to improve the identification performance of a gas sweetening plant using the negative correlation learning and genetic algorithm
收藏 引用
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING 2014年 21卷 26-39页
作者: Azizkhani, Javad Sadeghi Jazayeri-Rad, Hooshang Nabhani, Nader Petr Univ Technol Dept Automat & Instrumentat Ahvaz Iran Petr Univ Technol Dept Mech Engn Ahvaz Iran
This paper presents a combination of negative correlation learning (NCL) and Genetic Algorithm (GA) to create an ensemble neural network (ENN). In this approach the component neural networks (CNNs) of ENN are trained ... 详细信息
来源: 评论