咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 控制科学与工程

主题

  • 2 篇 shuffling-type g...
  • 2 篇 strongly convex ...
  • 2 篇 non-convex finit...
  • 2 篇 stochastic gradi...
  • 1 篇 sampling with-ou...
  • 1 篇 sampling without...

机构

  • 1 篇 ctr wiskunde & i...
  • 1 篇 ibm res thomas j...
  • 1 篇 ebay inc. san jo...
  • 1 篇 univ n carolina ...
  • 1 篇 department of st...
  • 1 篇 centrum wiskunde...
  • 1 篇 ibm research tho...
  • 1 篇 ebay inc san jos...

作者

  • 2 篇 phuong ha nguyen
  • 2 篇 quoc tran-dinh
  • 1 篇 lam m. nguyen
  • 1 篇 marten van dijk
  • 1 篇 nguyen lam m.
  • 1 篇 van dijk marten
  • 1 篇 phan dzung t.
  • 1 篇 dzung t. phan

语言

  • 2 篇 英文
检索条件"主题词=non-convex finite-sum minimization"
2 条 记 录,以下是1-10 订阅
排序:
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2021年 第1期22卷 1-44页
作者: Nguyen, Lam M. Quoc Tran-Dinh Phan, Dzung T. Phuong Ha Nguyen van Dijk, Marten IBM Res Thomas J Watson Res Ctr Yorktown Hts NY 10598 USA Univ N Carolina Dept Stat & Operat Res Chapel Hill NC 27599 USA eBay Inc San Jose CA 95125 USA Ctr Wiskunde & Informat Amsterdam Netherlands
In this paper, we propose a unified convergence analysis for a class of generic shuffling-type gradient methods for solving finite-sum optimization problems. Our analysis works with any sampling without replacement st... 详细信息
来源: 评论
A unified convergence analysis for shuffling-type gradient methods
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 9397-9440页
作者: Lam M. Nguyen Quoc Tran-Dinh Dzung T. Phan Phuong Ha Nguyen Marten Van Dijk IBM Research Thomas J. Watson Research Center Yorktown Heights NY Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Chapel Hill NC eBay Inc. San Jose CA Centrum Wiskunde & Informatica Amsterdam Netherlands
In this paper, we propose a unified convergence analysis for a class of generic shuffling-type gradient methods for solving finite-sum optimization problems. Our analysis works with any sampling without replacement st... 详细信息
来源: 评论