Due to the advantages of high information densities and longevity, DNA storage systems have begun to attract a lot of attention. However, common obstacles to DNA storage are caused by insertion, deletion, and substitu...
详细信息
Due to the advantages of high information densities and longevity, DNA storage systems have begun to attract a lot of attention. However, common obstacles to DNA storage are caused by insertion, deletion, and substitution errors occurring in DNA synthesis and sequencing. In this paper, we first explain a method to convert binary data into general maximum run-length r sequences with specific length construction, which can be used as the message sequence of our proposed code. Then, we propose a new single insertion/deletion nonbinary systematic error correction code and its corresponding encoding algorithm. For the proposed code, we design the fixed maximum run-length r in the parity sequence of the proposed code to be three. Additionally, the last parity symbol and the first message symbol are always different. Hence, the overall maximum run-length r of the output codeword is guaranteed to be three when the maximum run-length of the message sequence is three. Finally, we determine the feasibility of the proposed encoding algorithm, verify successful decoding when a single insertion/deletion error occurs in the codeword, and present the comparison results with relevant works.
暂无评论