咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献

馆藏范围

  • 10 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 1 篇 光学工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
    • 1 篇 软件工程
  • 4 篇 理学
    • 3 篇 数学
    • 1 篇 物理学
    • 1 篇 地理学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 10 篇 nonconvex approx...
  • 2 篇 sparse subspace ...
  • 2 篇 dca
  • 2 篇 admm
  • 2 篇 dc programming
  • 1 篇 low rank matrix ...
  • 1 篇 noise reduction
  • 1 篇 deep learning
  • 1 篇 sparse matrices
  • 1 篇 low-rank present...
  • 1 篇 <mml:msub><mml:m...
  • 1 篇 sparse control
  • 1 篇 image segmentati...
  • 1 篇 tensor robust pr...
  • 1 篇 feature selectio...
  • 1 篇 low-rank matrix ...
  • 1 篇 convex functions
  • 1 篇 nuclear norm
  • 1 篇 vectors
  • 1 篇 optimization

机构

  • 2 篇 tianjin univ sch...
  • 1 篇 univ hong kong d...
  • 1 篇 univ macau dept ...
  • 1 篇 inst univ france...
  • 1 篇 nanjing univ pos...
  • 1 篇 ton duc thang un...
  • 1 篇 northwest inst n...
  • 1 篇 univ normandie i...
  • 1 篇 ton duc thang un...
  • 1 篇 univ lorraine de...
  • 1 篇 univ lorraine la...
  • 1 篇 univ surrey ctr ...
  • 1 篇 natl univ def te...
  • 1 篇 chinese univ hon...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ normandie l...
  • 1 篇 south china univ...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ kitakyushu ...

作者

  • 2 篇 gao kaixin
  • 2 篇 huang zheng-hai
  • 1 篇 thiao mamadou
  • 1 篇 dong wenhua
  • 1 篇 wu tingting
  • 1 篇 ng michael k.
  • 1 篇 dinh tao pham
  • 1 篇 li dongsheng
  • 1 篇 sun lei
  • 1 篇 chen yongyong
  • 1 篇 deng xiaoge
  • 1 篇 du peibing
  • 1 篇 lin peizeng
  • 1 篇 yin he-feng
  • 1 篇 gu xiaoyu
  • 1 篇 wu yaochen
  • 1 篇 guo lulu
  • 1 篇 wu xiao-jun
  • 1 篇 xiao xiaolin
  • 1 篇 tao pham dinh

语言

  • 9 篇 英文
  • 1 篇 其他
检索条件"主题词=nonconvex approximation"
10 条 记 录,以下是1-10 订阅
排序:
Sparse subspace clustering via nonconvex approximation
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2019年 第1期22卷 165-176页
作者: Dong, Wenhua Wu, Xiao-Jun Kittler, Josef Yin, He-Feng Jiangnan Univ Sch Internet Things Wuxi 214122 Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 7XH Surrey England
Among existing clustering methods, sparse subspace clustering (SSC) obtains superior clustering performance in grouping data points from a union of subspaces by solving a relaxed 0-minimization problem by 1-norm. The ... 详细信息
来源: 评论
Hyperspectral Image Denoising via Correntropy-Based nonconvex Low-Rank approximation
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2024年 17卷 6841-6859页
作者: Lin, Peizeng Sun, Lei Wu, Yaochen Ruan, Weiyong Sun Yat sen Univ Sch Syst Sci & Engn Guangzhou 510006 Peoples R China
Hyperspectral images (HSIs) are prone to be corrupted by various types of noise during the process of imaging and transmission, which seriously affect the subsequent HSI processing tasks. In this article, we proposed ... 详细信息
来源: 评论
nonconvex Optimization Problems for Maximum Hands-Off Control
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2025年 第3期70卷 1905-1912页
作者: Ikeda, Takuya Univ Kitakyushu Fac Environm Engn Fukuoka 8080135 Japan
Maximum hands-off control is the optimal solution to the L(0 )optimal control problem. While convex approximation is typically used to relax this problem, it does not necessarily result in maximum hands-off control. T... 详细信息
来源: 评论
Two-stage image segmentation based on nonconvex l2 - lp approximation and thresholding
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2021年 403卷 126168-126168页
作者: Wu, Tingting Shao, Jinbo Gu, Xiaoyu Ng, Michael K. Zeng, Tieyong Nanjing Univ Posts & Telecommun Sch Sci Nanjing 210023 Peoples R China Univ Hong Kong Dept Math Pokfulam Hong Kong Peoples R China Chinese Univ Hong Kong Dept Math Satin Hong Kong Peoples R China
Image segmentation is of great importance in image processing. In this paper, we propose a two-stage image segmentation strategy based on the nonconvex l(2) - l(p) approximation of the Mumford-Shah (MS) model, where w... 详细信息
来源: 评论
Low-Rank Quaternion approximation for Color Image Processing
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2020年 29卷 1426-1439页
作者: Chen, Yongyong Xiao, Xiaolin Zhou, Yicong Univ Macau Dept Comp & Informat Sci Macau 999078 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China
Low-rank matrix approximation (LRMA)-based methods have made a great success for grayscale image processing. When handling color images, LRMA either restores each color channel independently using the monochromatic mo... 详细信息
来源: 评论
Tensor Robust Principal Component Analysis via Tensor Fibered Rank and lp Minimization
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2023年 第1期16卷 423-460页
作者: Gao, Kaixin Huang, Zheng-Hai Tianjin Univ Sch Math Tianjin 300350 Peoples R China
Tensor robust principal component analysis (TRPCA) is an important method to handle high -dimensional data and has been widely used in many areas. In this paper, we mainly focus on the TRPCA problem based on tensor fi... 详细信息
来源: 评论
Efficient approaches for l2-l0 regularization and applications to feature selection in SVM
收藏 引用
APPLIED INTELLIGENCE 2016年 第2期45卷 549-565页
作者: Hoai An Le Thi Tao Pham Dinh Thiao, Mamadou Ton Duc Thang Univ Dept Management Sci & Technol Dev Ho Chi Minh City Vietnam Ton Duc Thang Univ Fac Math Stat Ho Chi Minh City Vietnam Univ Lorraine Lab Theoret & Appl Comp Sci F-57045 Metz France Univ Normandie INSA Rouen Math Lab Ave Univ F-76801 St Etienne France
For solving a class of a"" (2)- a"" (0)- regularized problems we convexify the nonconvex a"" (2)- a"" (0) term with the help of its biconjugate function. The resulting convex pr... 详细信息
来源: 评论
A nonconvex Implementation of Sparse Subspace Clustering: Algorithm and Convergence Analysis
收藏 引用
IEEE ACCESS 2020年 8卷 54741-54750页
作者: Deng, Xiaoge Sun, Tao Du, Peibing Li, Dongsheng Natl Univ Def Technol Coll Comp Natl Lab Parallel & Distributed Proc PDL Changsha 410073 Peoples R China Northwest Inst Nucl Technol Xian 710024 Peoples R China
Subspace clustering has been widely applied to detect meaningful clusters in high-dimensional data spaces. And the sparse subspace clustering (SSC) obtains superior clustering performance by solving a relaxed l(0)-min... 详细信息
来源: 评论
DCA based approaches for bi-level variable selection and application for estimate multiple sparse covariance matrices
收藏 引用
NEUROCOMPUTING 2021年 466卷 162-177页
作者: Le Thi, Hoai An Phan, Duy Nhat Dinh, Tao Pham Univ Lorraine Dept IA LGIPM F-57000 Metz France Inst Univ France IUF Paris France Univ Normandie Lab Math INSA Rouen Caen France
Variable selection plays an important role in analyzing high dimensional data and is a fundamental problem in machine learning. When the data possesses certain group structures in which individual variables are also m... 详细信息
来源: 评论
Low-rank matrix recovery problem minimizing a new ratio of two norms approximating the rank function then using an ADMM-type solver with applications
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2024年 438卷
作者: Gao, Kaixin Huang, Zheng-Hai Guo, Lulu Tianjin Univ Sch Math Tianjin 300350 Peoples R China
Since the nuclear norm may lead to suboptimal solutions to rank minimization problems, many nonconvex surrogates have been proposed to provide better rank function approximations. In this paper, we use the ratio of th... 详细信息
来源: 评论