咨询与建议

限定检索结果

文献类型

  • 66 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 70 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 理学
    • 53 篇 数学
    • 4 篇 物理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 34 篇 工学
    • 14 篇 电气工程
    • 14 篇 软件工程
    • 7 篇 计算机科学与技术...
    • 6 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 30 篇 管理学
    • 30 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 70 篇 nonsmooth convex...
  • 6 篇 bundle methods
  • 6 篇 global convergen...
  • 5 篇 moreau-yosida re...
  • 4 篇 proximal operato...
  • 4 篇 bundle method
  • 4 篇 constrained opti...
  • 3 篇 distributed opti...
  • 3 篇 damped inertial ...
  • 3 篇 monotone operato...
  • 3 篇 hessian-driven d...
  • 3 篇 proximal splitti...
  • 3 篇 moreau envelope
  • 3 篇 fixed point
  • 2 篇 logarithmic barr...
  • 2 篇 preconditioning
  • 2 篇 nonmonotone line...
  • 2 篇 subgradient meth...
  • 2 篇 subgradient meth...
  • 2 篇 inertial proxima...

机构

  • 3 篇 wayne state univ...
  • 3 篇 beijing univ tec...
  • 3 篇 harbin inst tech...
  • 2 篇 beijing inst tec...
  • 2 篇 ufrj facc br-00 ...
  • 2 篇 ufrj inst matema...
  • 2 篇 dalian univ tech...
  • 2 篇 wayne state univ...
  • 2 篇 univ vienna fac ...
  • 2 篇 inst matematica ...
  • 2 篇 harbin inst tech...
  • 2 篇 univ s australia...
  • 1 篇 univ n carolina ...
  • 1 篇 mcgill univ 805 ...
  • 1 篇 imecc unicamp ru...
  • 1 篇 hebei finance un...
  • 1 篇 univ southern ca...
  • 1 篇 dalian univ tech...
  • 1 篇 univ tokyo inst ...
  • 1 篇 beijing inst tec...

作者

  • 3 篇 xue xiaoping
  • 3 篇 solodov mikhail
  • 3 篇 cevher volkan
  • 3 篇 pang li-ping
  • 3 篇 quoc tran-dinh
  • 3 篇 sagastizabal cla...
  • 3 篇 raguet hugo
  • 3 篇 karapetyants mik...
  • 2 篇 yin george
  • 2 篇 chbani zaki
  • 2 篇 riahi hassan
  • 2 篇 attouch hedy
  • 2 篇 fukushima m
  • 2 篇 scheimberg susan...
  • 2 篇 burachik regina ...
  • 2 篇 abry patrice
  • 2 篇 qin sitian
  • 2 篇 iiduka hideaki
  • 2 篇 zeng xianlin
  • 2 篇 liang shu

语言

  • 67 篇 英文
  • 3 篇 其他
检索条件"主题词=nonsmooth convex optimization"
70 条 记 录,以下是1-10 订阅
排序:
nonsmooth convex optimization to Estimate the Covid-19 Reproduction Number Space-Time Evolution With Robustness Against Low Quality Data
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 2859-2868页
作者: Pascal, Barbara Abry, Patrice Pustelnik, Nelly Roux, Stephane Gribonval, Remi Flandrin, Patrick Univ Lille CNRS Cent Lille UMR 9189CRIStAL F-59000 Lille France CNRS ENS Lyon Lab Phys F-69342 Lyon France Univ Lyon CNRS EnsL INRIALIP F-69342 Lyon 07 France
Daily pandemic surveillance, often achieved through the estimation of the reproduction number, constitutes a critical challenge for national health authorities to design counter-measures. In an earlier work, we propos... 详细信息
来源: 评论
Distributed proximal-gradient algorithms for nonsmooth convex optimization of second-order multiagent systems
收藏 引用
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL 2020年 第17期30卷 7574-7592页
作者: Wang, Qing Chen, Jie Zeng, Xianlin Xin, Bin Beijing Inst Technol Sch Automat 5 South Zhongguancun St Beijing 100081 Peoples R China Beijing Inst Technol State Key Lab Intelligent Control & Decis Complex Beijing Peoples R China Tongji Univ Dept Control Sci & Engn Shanghai Peoples R China Beijing Inst Technol Beijing Adv Innovat Ctr Intelligent Robots & Syst Beijing Peoples R China
This article studies the distributed nonsmooth convex optimization problems for second-order multiagent systems. The objective function is the summation of local cost functions which are convex but nonsmooth. Each age... 详细信息
来源: 评论
A Two-Layer Recurrent Neural Network for nonsmooth convex optimization Problems
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015年 第6期26卷 1149-1160页
作者: Qin, Sitian Xue, Xiaoping Harbin Inst Technol Dept Math Weihai 264209 Peoples R China Harbin Inst Technol Dept Math Harbin 150001 Peoples R China
In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network mo... 详细信息
来源: 评论
Globally convergent BFGS method for nonsmooth convex optimization
收藏 引用
JOURNAL OF optimization THEORY AND APPLICATIONS 2000年 第3期104卷 539-558页
作者: Rauf, AI Fukushima, M Hamdard Univ Islamabad Pakistan Kyoto Univ Grad Sch Informat Dept Appl Math & Phys Kyoto Japan
We propose an implementable BFGS method for solving a nonsmooth convex optimization problem by converting the original objective function into a once continuously differentiable function by way of the Moreau-Yosida re... 详细信息
来源: 评论
Distributed Coordination for nonsmooth convex optimization via Saddle-Point Dynamics
收藏 引用
JOURNAL OF NONLINEAR SCIENCE 2019年 第4期29卷 1247-1272页
作者: Cortes, Jorge Niederlaender, Simon K. Univ Calif San Diego Jacobs Sch Engn Dept Mech & Aerosp Engn 9500 Gilman Dr La Jolla CA 92093 USA Univ Stuttgart Inst Syst Theory & Automat Control D-70550 Stuttgart Germany
This paper considers continuous-time coordination algorithms for networks of agents that seek to collectively solve a general class of nonsmooth convex optimization problems with an inherent distributed structure. Our... 详细信息
来源: 评论
Convergence analysis of iterative methods for nonsmooth convex optimization over fixed point sets of quasi-nonexpansive mappings
收藏 引用
MATHEMATICAL PROGRAMMING 2016年 第1-2期159卷 509-538页
作者: Iiduka, Hideaki Meiji Univ Dept Comp Sci Tama Ku 1-1-1 Higashimita Kawasaki Kanagawa 2148571 Japan
This paper considers a networked system with a finite number of users and supposes that each user tries to minimize its own private objective function over its own private constraint set. It is assumed that each user&... 详细信息
来源: 评论
Incremental subgradient method for nonsmooth convex optimization with fixed point constraints
收藏 引用
optimization METHODS & SOFTWARE 2016年 第5期31卷 931-951页
作者: Iiduka, H. Meiji Univ Dept Comp Sci Tama Ku 1-1-1 Higashimita Kawasaki Kanagawa Japan
This paper proposes an incremental subgradient method for solving the problem of minimizing the sum of nondifferentiable, convex objective functions over the intersection of fixed point sets of nonexpansive mappings i... 详细信息
来源: 评论
Distributed Multiproximal Algorithm for nonsmooth convex optimization With Coupled Inequality Constraints
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2023年 第12期68卷 8126-8133页
作者: Huang, Yi Meng, Ziyang Sun, Jian Ren, Wei Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China Tsinghua Univ Dept Precis Instrument Beijing 100081 Peoples R China Beijing Inst Technol Chongqing Innovat Ctr Chongqing Peoples R China Beijing Inst Technol Sch Automat Natl Key Lab Autonomous Intelligent Unmanned Syst Beijing 100081 Peoples R China Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA
This article studies a class of distributed nonsmooth convex optimization problems subject to local set constraints and coupled nonlinear inequality constraints. In particular, each local objective function consists o... 详细信息
来源: 评论
A globally convergent proximal Newton-type method in nonsmooth convex optimization
收藏 引用
MATHEMATICAL PROGRAMMING 2023年 第1期198卷 899-936页
作者: Mordukhovich, Boris S. Yuan, Xiaoming Zeng, Shangzhi Zhang, Jin Wayne State Univ Dept Math Detroit MI 48202 USA Univ Hong Kong Dept Math Hong Kong Peoples R China Univ Victoria Dept Math & Stat Victoria BC Canada Southern Univ Sci & Technol Natl Ctr Appl Math Shenzhen Dept Math Shenzhen 518055 Peoples R China
The paper proposes and justifies a new algorithm of the proximal Newton type to solve a broad class of nonsmooth composite convex optimization problems without strong convexity assumptions. Based on advanced notions a... 详细信息
来源: 评论
Distributed quasi-monotone subgradient algorithm for nonsmooth convex optimization over directed graphs
收藏 引用
AUTOMATICA 2019年 101卷 175-181页
作者: Liang, Shu Wang, Leyi Yin, George Univ Sci & Technol Beijing Sch Automat & Elect Engn Minist Educ Key Lab Knowledge Automat Ind Proc Beijing 100083 Peoples R China Wayne State Univ Dept Elect & Comp Engn Detroit MI 48202 USA Wayne State Univ Dept Math Detroit MI 48202 USA
Distributed optimization is of essential importance in networked systems. Most of the existing distributed algorithms either assume the information exchange over undirected graphs, or require that the underlying direc... 详细信息
来源: 评论