咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 4 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 6 篇 object detection...
  • 2 篇 computer vision
  • 1 篇 deep learning mo...
  • 1 篇 safety
  • 1 篇 automation
  • 1 篇 human pose estim...
  • 1 篇 unmanned aerial ...
  • 1 篇 deep learning in...
  • 1 篇 real-time vision
  • 1 篇 linemod algorith...
  • 1 篇 point clouds
  • 1 篇 automatic annota...
  • 1 篇 joint localizati...
  • 1 篇 human body pose ...
  • 1 篇 bin-picking appl...
  • 1 篇 pose tracking
  • 1 篇 computer vision ...
  • 1 篇 human activity r...
  • 1 篇 robot operating ...
  • 1 篇 human robot coll...

机构

  • 1 篇 nara inst sci & ...
  • 1 篇 tech univ munich...
  • 1 篇 srm inst sci & t...
  • 1 篇 king mongkuts in...
  • 1 篇 china univ geosc...
  • 1 篇 aarhus universit...
  • 1 篇 hubei key lab ad...

作者

  • 1 篇 genc yakup
  • 1 篇 brindha r.
  • 1 篇 tanvir afraz
  • 1 篇 taweesoontorn th...
  • 1 篇 golovina olga
  • 1 篇 prateek
  • 1 篇 grundmann matthi...
  • 1 篇 teizer jochen
  • 1 篇 peng jian
  • 1 篇 benhimane selim
  • 1 篇 konghuayrob poom
  • 1 篇 yanyong sarucha
  • 1 篇 kiyokawa takuya
  • 1 篇 navab nassir
  • 1 篇 johansen karsten...
  • 1 篇 malis ezio
  • 1 篇 najafi hesam
  • 1 篇 takamatsu jun
  • 1 篇 de figueiredo ru...
  • 1 篇 su ya

语言

  • 6 篇 英文
检索条件"主题词=object detection and pose estimation"
6 条 记 录,以下是1-10 订阅
排序:
AI-Powered Workout Analysis Application for Posture Feedback and Repitition Grading  2
AI-Powered Workout Analysis Application for Posture Feedback...
收藏 引用
2nd International Conference on Inventive Computing and Informatics (ICICI)
作者: Prateek Tanvir, Afraz Brindha, R. SRM Inst Sci & Technol Dept Comp Technol Kattankulathur Chengalpattu India
The AI-powered exercise tracking system presented in this project represents a new approach to revolutionize fitness routines using cutting-edge technologies. Leveraging advanced computer vision techniques, particular... 详细信息
来源: 评论
Hybrid Deep Learning and FAST-BRISK 3D object detection Technique for Bin-picking Application
收藏 引用
SENSORS AND MATERIALS 2024年 第4期36卷 1389-1404页
作者: Taweesoontorn, Thanakrit Yanyong, Sarucha Konghuayrob, Poom King Mongkuts Inst Technol Ladkrabang Sch Engn Dept Robot & AI Engn 1 Chalong Kung1 Alley Bangkok 10520 Thailand
In the field of industrial robotics, robotic arms have been significantly integrated, driven by their precise functionality and operational efficiency. We here propose a hybrid method for binpicking tasks using a coll... 详细信息
来源: 评论
An Improved Algorithm for detection and pose estimation of Texture-Less objects
收藏 引用
JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2021年 第2期25卷 204-212页
作者: Peng, Jian Su, Ya China Univ Geosci Sch Automat 388 Lumo Rd Wuhan 430074 Hubei Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C 388 Lumo Rd Wuhan 430074 Hubei Peoples R China
This paper introduces an improved algorithm for texture-less object detection and pose estimation in industrial scenes. In the template training stage, a multi-scale template training method is proposed to improve the... 详细信息
来源: 评论
Autonomous Safety Barrier Inspection in Construction: An Approach Using Unmanned Aerial Vehicles and SafeBIM  38
Autonomous Safety Barrier Inspection in Construction: An App...
收藏 引用
38th International Symposium on Automation and Robotics in Construction, ISARC 2021
作者: Johansen, Karsten W. de Figueiredo, Rui Pimentel Golovina, Olga Teizer, Jochen Aarhus University Denmark
Construction sites are dynamic, and the environment is changing fast, which means the collective safety equipment, such as fall protection barriers, should also be changed to keep it compliant with the construction co... 详细信息
来源: 评论
Efficient collection and automatic annotation of real-world object images by taking advantage of post-diminished multiple visual markers
收藏 引用
ADVANCED ROBOTICS 2019年 第24期33卷 1264-1280页
作者: Kiyokawa, Takuya Tomochika, Keita Takamatsu, Jun Ogasawara, Tsukasa Nara Inst Sci & Technol Div Informat Sci Nara Japan
To collect a human-annotated dataset for training deep convolutional neural networks is a very time-consuming and laborious process. To reduce this burden, we previously proposed an automated annotation by placing one... 详细信息
来源: 评论
Real-time object detection and tracking for industrial applications
Real-time object detection and tracking for industrial appli...
收藏 引用
3rd International Conference on Computer Vision Theory and Applications
作者: Benhimane, Selim Najafi, Hesam Grundmann, Matthias Genc, Yakup Navab, Nassir Malis, Ezio Tech Univ Munich Dept Comp Sci Boltzmannstr 3 D-85748 Garching Germany
Real-time tracking of complex 3D objects has been shown to be a challenging task for industrial applications where robustness, accuracy and run-time performance are of critical importance. This paper presents a fully ... 详细信息
来源: 评论