咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 16 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 20 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 5 篇 信息与通信工程
    • 3 篇 测绘科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 7 篇 理学
    • 2 篇 物理学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 医学
    • 5 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 33 篇 object detectors
  • 6 篇 deep learning
  • 4 篇 mask r-cnn
  • 3 篇 object detection
  • 3 篇 yolo
  • 3 篇 adversarial exam...
  • 3 篇 sports scenes
  • 3 篇 computer vision
  • 3 篇 adversarial patc...
  • 2 篇 generative adver...
  • 2 篇 optical flow
  • 2 篇 artificial intel...
  • 2 篇 neural networks
  • 2 篇 action recogniti...
  • 2 篇 saliency methods
  • 2 篇 handball scenes
  • 2 篇 ssd
  • 2 篇 adversarial atta...
  • 2 篇 domain knowledge
  • 2 篇 convolutional ne...

机构

  • 6 篇 univ rijeka dept...
  • 2 篇 univ bremen brem...
  • 2 篇 nanjing univ aer...
  • 2 篇 bonn rhein sieg ...
  • 2 篇 univ groningen g...
  • 2 篇 nanjing univ aer...
  • 1 篇 princess nourah ...
  • 1 篇 univ oulu ctr ma...
  • 1 篇 norwegian univ s...
  • 1 篇 south china norm...
  • 1 篇 kunming univ sci...
  • 1 篇 natl univ sci & ...
  • 1 篇 air univ dept co...
  • 1 篇 purple mt labs p...
  • 1 篇 univ chinese aca...
  • 1 篇 harbin engn univ...
  • 1 篇 nudt coll elect ...
  • 1 篇 chinese acad sci...
  • 1 篇 gwangju inst sci...
  • 1 篇 yunnan univ engn...

作者

  • 4 篇 ivasic-kos marin...
  • 3 篇 pobar miran
  • 2 篇 zhao yue
  • 2 篇 wang jian
  • 2 篇 valdenegro-toro ...
  • 2 篇 falomir zoe
  • 2 篇 arriaga octavio
  • 2 篇 xue mingfu
  • 2 篇 ivasic-kos m.
  • 2 篇 chen kai
  • 2 篇 he can
  • 2 篇 liu weiqiang
  • 2 篇 pobar m.
  • 2 篇 padmanabhan deep...
  • 2 篇 ploeger paul g.
  • 1 篇 wu zhiyu
  • 1 篇 ceccarelli andre...
  • 1 篇 qin yingxin
  • 1 篇 zhao zongheng
  • 1 篇 gasteratos anton...

语言

  • 31 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=object detectors"
33 条 记 录,以下是1-10 订阅
排序:
IPAttack: imperceptible adversarial patch to attack object detectors
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-12页
作者: Wen, Yongming Si, Peiyuan Zhou, Wei Zhao, Zongheng Yi, Chao Liu, Renyang Yunnan Univ Engn Res Ctr Cyberspace Kunming 650500 Yunnan Peoples R China China South to North Water Divers Grp Water Networ Beijing Peoples R China Nanyang Technol Univ Singapore 639798 Singapore Natl Univ Singapore Singapore 117602 Singapore
With the widespread application of deep learning, general object detectors have become increasingly popular in our daily lives. Extensive research, however, has shown that existing detectors are vulnerable to patch-ba... 详细信息
来源: 评论
Classification and regression Task Integration in distillation for object detectors
收藏 引用
NEUROCOMPUTING 2025年 624卷
作者: Su, Hai Jian, Zhenwen Wei, Yanghui Yu, Songsen South China Normal Univ Dept Software Engn Foshan 528225 Guangdong Peoples R China
Knowledge distillation is a popular technique for model compression. However, since knowledge distillation originated in image classification, it primarily concentrates on classification tasks in object detection and ... 详细信息
来源: 评论
Realistic Adversarial Attacks on object detectors Using Generative Models
收藏 引用
Journal of Mathematical Sciences (United States) 2024年 第2期285卷 245-254页
作者: Shelepneva, D. Arkhipenko, K. Ivannikov Institute for System Programming of the RAS Moscow Russian Federation
An important limitation of existing adversarial attacks on real-world object detectors lies in their threat model: adversarial patch-based methods often produce suspicious images while image generation approaches do n... 详细信息
来源: 评论
Fooling object detectors in the Physical World with Natural Adversarial Camouflage  22
Fooling Object Detectors in the Physical World with Natural ...
收藏 引用
IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) / BigDataSE Conference / CSE Conference / EUC Conference / ISCI Conference
作者: Li, Dandan Li, Yufeng Zhang, Guiqi Sun, Ke Li, Jiangtao Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China Purple Mt Labs Nanjing Peoples R China
Recent research has brought to light the vulnerability of deep neural networks (DNNs) to adversarial examples. While several methods have been proposed for generating physical adversarial examples, they often suffer f... 详细信息
来源: 评论
Evaluation of object detectors in Online Videos  11
Evaluation of Object Detectors in Online Videos
收藏 引用
11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)
作者: Su, Jiongming Xiang, Fengtao Liu, Hongfu Wu, Jianzhai Natl Univ Def Technol Coll Intelligence Sci & Technol Changsha Peoples R China
object detectors based on deep convolutional networks generally have problems such as large amount of calculation, accuracy and speed of object detecor cannot have both, and it is difficult to achieve real-time object... 详细信息
来源: 评论
I Don't Know You, But I Can Catch You: Real-Time Defense against Diverse Adversarial Patches for object detectors  24
I Don't Know You, But I Can Catch You: Real-Time Defense aga...
收藏 引用
31st Conference on Computer and Communications Security
作者: Lin, Zijin Zhao, Yue Chen, Kai He, Jinwen UCAS Sch Cyber Secur CAS IIE Beijing Peoples R China Chinese Acad Sci IIE Beijing Peoples R China
Deep neural networks (DNNs) have revolutionized the field of computer vision like object detection with their unparalleled performance. However, existing research has shown that DNNs are vulnerable to adversarial atta... 详细信息
来源: 评论
Validation of Safety Metrics for object detectors in Autonomous Driving  24
Validation of Safety Metrics for Object Detectors in Autonom...
收藏 引用
39th Annual ACM Symposium on Applied Computing (SAC)
作者: Ronnestad, Andreas Ceccarelli, Andrea Montecchi, Leonardo Norwegian Univ Sci & Technol Trondheim Norway Univ Florence Florence Italy
object detection consists in perceiving and locating instances of objects in multi-dimensional data, such as images or lidar scans. While object detection is a fundamental step in autonomous vehicles applications, it ... 详细信息
来源: 评论
Sanity Checks for Saliency Methods Explaining object detectors  1st
Sanity Checks for Saliency Methods Explaining Object Detecto...
收藏 引用
1st World Conference on Explainable Artificial Intelligence (XAI)
作者: Padmanabhan, Deepan Chakravarthi Ploeger, Paul G. Arriaga, Octavio Valdenegro-Toro, Matias Bonn Rhein Sieg Univ Appl Sci St Augustin Germany Univ Bremen Bremen Germany Univ Groningen Groningen Netherlands
Saliency methods are frequently used to explain Deep Neural Network-based models. Adebayo et al.'s work on evaluating saliency methods for classification models illustrate certain explanation methods fail the mode... 详细信息
来源: 评论
Seeing isn't Believing: Towards More Robust Adversarial Attack Against Real World object detectors  19
Seeing isn't Believing: Towards More Robust Adversarial Atta...
收藏 引用
ACM SIGSAC Conference on Computer and Communications Security (CCS)
作者: Zhao, Yue Zhu, Hong Liang, Ruigang Shen, Qintao Zhang, Shengzhi Chen, Kai Chinese Acad Sci Inst Informat Engn SKLOIS Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Boston Univ Dept Comp Sci Metropolitan Coll Boston MA 02215 USA
Recently Adversarial Examples (AEs) that deceive deep learning models have been a topic of intense research interest. Compared with the AEs in the digital space, the physical adversarial attack is considered as a more... 详细信息
来源: 评论
NaturalAE: Natural and robust physical adversarial examples for object detectors
收藏 引用
JOURNAL OF INFORMATION SECURITY AND APPLICATIONS 2021年 57卷
作者: Xue, Mingfu Yuan, Chengxiang He, Can Wang, Jian Liu, Weiqiang Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Elect & Informat Engn Nanjing Peoples R China
Recently, many studies show that deep neural networks (DNNs) are susceptible to adversarial examples, which are generated by adding imperceptible perturbations to the input of DNN. However, in order to convince that a... 详细信息
来源: 评论