咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 24 篇 测绘科学与技术
    • 13 篇 环境科学与工程(可...
    • 4 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 水利工程
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 风景园林学(可授工...
  • 27 篇 理学
    • 18 篇 地球物理学
    • 7 篇 地理学
    • 4 篇 生物学
    • 4 篇 生态学
    • 2 篇 物理学
  • 18 篇 医学
    • 18 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 5 篇 农学
    • 2 篇 林学
    • 1 篇 作物学
    • 1 篇 园艺学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 38 篇 object-based ima...
  • 5 篇 deep learning
  • 3 篇 land cover class...
  • 3 篇 remote sensing
  • 3 篇 machine learning
  • 3 篇 convolutional ne...
  • 3 篇 google earth eng...
  • 2 篇 random forest
  • 2 篇 task analysis
  • 2 篇 noaa-avhrr
  • 2 篇 superpixel segme...
  • 2 篇 satellite image ...
  • 2 篇 earth
  • 2 篇 lidar
  • 2 篇 uav
  • 2 篇 time series anal...
  • 2 篇 land use
  • 2 篇 satellites
  • 2 篇 gis
  • 2 篇 compact texture ...

机构

  • 2 篇 aristotle univ t...
  • 2 篇 mediterranean ag...
  • 2 篇 univ alcala de h...
  • 2 篇 univ montpellier...
  • 1 篇 oak ridge associ...
  • 1 篇 hayden wing asso...
  • 1 篇 istanbul tech un...
  • 1 篇 univ michigan de...
  • 1 篇 henan univ techn...
  • 1 篇 univ liverpool l...
  • 1 篇 jiangsu ctr coll...
  • 1 篇 us epa ffice res...
  • 1 篇 dlr dfd german r...
  • 1 篇 ctr ecol & hydro...
  • 1 篇 amity univ amity...
  • 1 篇 nanjing univ jia...
  • 1 篇 malawi liyerpool...
  • 1 篇 univ texas dalla...
  • 1 篇 wuhan univ state...
  • 1 篇 rochester inst t...

作者

  • 2 篇 gbodjo yawogan j...
  • 2 篇 singh sultan
  • 2 篇 interdonato robe...
  • 2 篇 ventura g
  • 2 篇 ghosh swagata
  • 2 篇 mitri gh
  • 2 篇 gaetano raffaele
  • 2 篇 kumar sunil
  • 2 篇 ienco dino
  • 2 篇 khelifa djerriri
  • 2 篇 gitas iz
  • 1 篇 tapete deodato
  • 1 篇 li huapeng
  • 1 篇 zhang shuqing
  • 1 篇 zhang chenxiao
  • 1 篇 li wenwen
  • 1 篇 wu guofeng
  • 1 篇 shi tiezhu
  • 1 篇 tajbar sapna
  • 1 篇 j.-f.mas

语言

  • 34 篇 英文
  • 4 篇 其他
检索条件"主题词=object-based image classification"
38 条 记 录,以下是11-20 订阅
排序:
Mapping Fractional Vegetation Cover Using Unoccupied Aerial Vehicle imagery to Guide Conservation of a Rare Riparian Shrub Ecosystem in Southern California
收藏 引用
REMOTE SENSING 2023年 第21期15卷 5113页
作者: Rose, Miranda Brooke Mills, Mystyn Franklin, Janet Larios, Loralee San Diego State Univ Dept Geog San Diego CA 92182 USA Univ Calif Riverside Dept Bot & Plant Sci Riverside CA 92521 USA Calif State Univ Dept Geog Long Beach CA 90840 USA
The use of unoccupied aerial vehicles (UAVs) for vegetation monitoring is widespread in agriculture and forestry but far less so in ecological restoration where it has tremendous unrealized potential. We tested the ab... 详细信息
来源: 评论
A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2020年 第0期88卷 102086-000页
作者: Zhang, Chenxiao Yue, Peng Tapete, Deodato Shangguan, Boyi Wang, Mi Wu, Zhaoyan Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Remote Sensing LIESMARS 129 Luoyu Rd Wuhan 430079 Hubei Peoples R China Wuhan Univ Sch Remote Sensing & Informat Engn 129 Luoyu Rd Wuhan 430079 Hubei Peoples R China Wuhan Univ HPECIG 129 Luoyu Rd Wuhan 430079 Hubei Peoples R China Collaborat Innovat Ctr Geospatial Technol 129 Luoyu Rd Wuhan 430079 Hubei Peoples R China Italian Space Agcy ASI Via Politecn Snc I-00133 Rome Italy
classification of very high resolution imagery (VHRI) is challenging due to the difficulty in mining complex spatial and spectral patterns from rich image details. Various object-based Convolutional Neural Networks (O... 详细信息
来源: 评论
object-based classification OF SENTINEL-2 imageRY USING COMPACT TEXTURE UNIT DESCRIPTORS THROUGH GOOGLE EARTH ENGINE
OBJECT-BASED CLASSIFICATION OF SENTINEL-2 IMAGERY USING COMP...
收藏 引用
Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)
作者: Djerriri, Khelifa Safia, Abdelmounaime Adjoudj, Reda Agence Spatiale Algerienne Ctr Tech Spatiales Arzew Algeria Univ Djillali Liabes Sidi Bel Abbes Dept Comp Sci Sidi Bel Abbes Algeria Sherbrooke Univ Ctr Res & Applicat Remote Sensing CARTEL Dept Geomat Sherbrooke PQ Canada
This study investigates the possibilities of improving the classification of high spatial resolution images by using object-based approach, superpixel segmentation and compact texture unit descriptors. The proposed ap... 详细信息
来源: 评论
A recurrent curve matching classification method integrating within-object spectral variability and between-object spatial association
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2021年 101卷 102367-102367页
作者: Tang, Yunwei Qiu, Fang Jing, Linhai Shi, Fan Li, Xiao Chinese Acad Sci Aerosp Informat Res Inst Key Lab Digital Earth Sci 9 South Rd Beijing 100094 Peoples R China Univ Texas Dallas Geospatial Informat Sci 800 West Campbell Rd Richardson TX 75080 USA Henan Univ Technol Coll Informat Sci & Engn 100 Lianhua St Zhengzhou 450001 Henan Peoples R China
object-based image analysis (OBIA), which has been commonly used for land cover and land use classification, may encounter challenges when satellite images' spatial resolution achieves at the sub-meter level. An i... 详细信息
来源: 评论
Scale-sets image classification with hierarchical sample enriching and automatic scale selection
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2021年 105卷 102605-102605页
作者: Hu, Zhongwen Shi, Tiezhu Wang, Chisheng Li, Qingquan Wu, Guofeng Shenzhen Univ MNR Key Lab Geoenvironm Monitoring Great Bay Area Shenzhen 518060 Peoples R China Shenzhen Univ Guangdong Key Lab Urban Informat & Guangdong Hong Shenzhen 518060 Peoples R China Shenzhen Univ Shenzhen Key Lab Spatial Smart Sensing & Serv Shenzhen 518060 Peoples R China Shenzhen Univ Sch Architecture & Urban Planning Shenzhen 518060 Peoples R China
object-based image analysis (OBIA) has been widely used for classifying high-spatial-resolution images, and the selection of scale parameter(s) is inevitable in previous OBIA tasks. However, selecting appropriate scal... 详细信息
来源: 评论
The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control?
收藏 引用
MALARIA JOURNAL 2021年 第1期20卷 244-244页
作者: Stanton, Michelle C. Kalonde, Patrick Zembere, Kennedy Spaans, Remy Hoek Jones, Christopher M. Univ Liverpool Liverpool Sch Trop Med Vector Biol Dept Liverpool Merseyside England Univ Lancaster Lancaster Med Sch Lancaster England Malawi Liyerpool Wellcome Trust Clin Res Programm Blantyre Malawi
BackgroundSpatio-temporal trends in mosquito-borne diseases are driven by the locations and seasonality of larval habitat. One method of disease control is to decrease the mosquito population by modifying larval habit... 详细信息
来源: 评论
US EPA EnviroAtlas Meter-Scale Urban Land Cover (MULC): 1-m Pixel Land Cover Class Definitions and Guidance
收藏 引用
REMOTE SENSING 2020年 第12期12卷 1909-1909页
作者: Pilant, Andrew Endres, Keith Rosenbaum, Daniel Gundersen, Gillian US EPA Ffice Res & Dev MD243-05 Res Triangle Pk NC 27711 USA Oak Ridge Inst Sci & Educ POB 117 Oak Ridge TN 37831 USA Oak Ridge Associated Univ Inc POB 117 Oak Ridge TN 37831 USA
This article defines the land cover classes used in Meter-Scale Urban Land Cover (MULC), a unique, high resolution (one meter(2)per pixel) land cover dataset developed for 30 US communities for the United States Envir... 详细信息
来源: 评论
Weakly Supervised Learning for Land Cover Mapping of Satellite image Time Series via Attention-based CNN
收藏 引用
IEEE ACCESS 2020年 8卷 179547-179560页
作者: Ienco, Dino Gbodjo, Yawogan Jean Eudes Gaetano, Raffaele Interdonato, Roberto Univ Montpellier UMR TETIS INRAE F-34000 Montpellier France CIRAD UMR TETIS F-34000 Montpellier France
The unprecedented possibility to acquire high resolution Satellite image Time Series (SITS) data is opening new opportunities to monitor the different aspects of the Earth Surface but, at the same time, it is raising ... 详细信息
来源: 评论
object-based classification Of Sentinel-2 imagery Using Compact Texture Unit Descriptors Through Google Earth Engine
Object-Based Classification Of Sentinel-2 Imagery Using Comp...
收藏 引用
Geoscience and Remote Sensing Symposium (M2GARSS), Mediterranean and Middle-East
作者: Khelifa Djerriri Abdelmounaime Safia Reda Adjoudj Agence Spatiale Algérienne Centre des Techniques Spatiales Arzew Algeria Centre for Research and Applications in Remote Sensing (CARTEL) Sherbrooke University Canada Department of Computer Sciences Djillali Liabes University Sidi Bel Abbes Algeria
This study investigates the possibilities of improving the classification of high spatial resolution images by using object-based approach, superpixel segmentation and compact texture unit descriptors. The proposed ap... 详细信息
来源: 评论
Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2018年 第2期12卷 025010-1-025010-21页
作者: Fu, Tengyu Ma, Lei Li, Manchun Johnson, Brian A. Nanjing Univ Jiangsu Prov Key Lab Geog Informat Sci & Technol Nanjing Jiangsu Peoples R China Nanjing Univ Sch Geog & Oceanog Sci Nanjing Jiangsu Peoples R China Inst Global Environm Strategies Nat Resources & Ecosyst Serv Area Hayama Kanagawa Japan
Convolutional neural network (CNN) has shown great success in computer vision tasks, but their application in land-use type classifications within the context of object-based image analysis has been rarely explored, e... 详细信息
来源: 评论