As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensionalvariational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos...
详细信息
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensionalvariational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote *** algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric *** this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity *** retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity *** this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.
The microwave humidity and temperature sounder (MWHTS) on the Fengyun (FY)-3C satellite measures the outgoing radiance from the Earth's surface and atmospheric constituents. MWHTS, which makes measurements in the ...
详细信息
The microwave humidity and temperature sounder (MWHTS) on the Fengyun (FY)-3C satellite measures the outgoing radiance from the Earth's surface and atmospheric constituents. MWHTS, which makes measurements in the isolated oxygen absorption line near 118 GHz and the vicinity of the strong water vapor absorption line around 183 GHz, can provide fine vertical distribution structures of both atmospheric humidity and temperature. However, in order to obtain the accurate soundings of humidity and temperature by physical retrieval methods, the bias between the observed and simulated radiance calculated by the radiative transfer model from the background or first guess profiles must be corrected. In this study, two bias correction methods are developed through the correlation analysis between MWHTS measurements and air mass identified by the first guess profiles of the physical inversion;one is the linear regression correction (LRC), and the other is the neural network correction (NNC), representing the linear and nonlinear relationships between MWHTS measurements and air mass, respectively. The correction methods have been applied to MWHTS observed brightness temperatures over the geographic area (180 degrees-180 degrees E, 60 degrees S-60 degrees N). The corrected results are evaluated by the probability density function of the differences between corrected observations and simulated values and the root mean square errors (RMSE) with respect to simulated observations. The numerical results show that the NNC method has better performance, especially in MWHTS Channels 1 and 7-9, whose peak weight function heights are close to the surface. In order to assess the effects of bias correction methods proposed in this study on the retrieval accuracy, a one-dimensionalvariational system was built and applied to the MWHTS brightness temperatures to estimate the atmospheric temperature and humidity profiles. The retrieval results also show that NNC has better performance. An indica
暂无评论