咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程

主题

  • 4 篇 online sequentia...
  • 1 篇 extreme learning...
  • 1 篇 decorrelated neu...
  • 1 篇 forgetting mecha...
  • 1 篇 analog-digital m...
  • 1 篇 predictive model...
  • 1 篇 compressed sampl...
  • 1 篇 negative correla...
  • 1 篇 extreme machine ...
  • 1 篇 particle swarm o...
  • 1 篇 power quality ev...
  • 1 篇 dual extreme lea...
  • 1 篇 genetic algorith...
  • 1 篇 online spatiotem...
  • 1 篇 effluent quality...
  • 1 篇 mathematical mod...
  • 1 篇 data models
  • 1 篇 training
  • 1 篇 adaptation model...
  • 1 篇 neural network e...

机构

  • 1 篇 chongqing techno...
  • 1 篇 chongqing techno...
  • 1 篇 shenzhen univ de...
  • 1 篇 xidian univ key ...
  • 1 篇 northeastern uni...
  • 1 篇 guangdong univ t...
  • 1 篇 univ hong kong d...
  • 1 篇 sun yat sen univ...

作者

  • 1 篇 xiao tengfei
  • 1 篇 wang min
  • 1 篇 xu kangkang
  • 1 篇 zhou hongjing
  • 1 篇 bai yun
  • 1 篇 wang haitao
  • 1 篇 wang junwei
  • 1 篇 zhu chengjiu
  • 1 篇 ding jinliang
  • 1 篇 jiao licheng
  • 1 篇 tan xi
  • 1 篇 fan bi
  • 1 篇 chai tianyou
  • 1 篇 yang shuyuan
  • 1 篇 yu tingting
  • 1 篇 jin xi
  • 1 篇 jin li
  • 1 篇 li chuanbao

语言

  • 4 篇 英文
检索条件"主题词=online sequential learning algorithm"
4 条 记 录,以下是1-10 订阅
排序:
Dual Extreme learning Machine Based online Spatiotemporal Modeling With Adaptive Forgetting Factor
收藏 引用
IEEE ACCESS 2021年 9卷 67379-67390页
作者: Xu, Kangkang Tan, Xi Fan, Bi Xiao, Tengfei Jin, Xi Zhu, Chengjiu Guangdong Univ Technol Sch Elect Engn Guangzhou 510006 Peoples R China Shenzhen Univ Dept Management Sci Shenzhen 518060 Peoples R China Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou 510006 Peoples R China
Many industrial thermal processes are large-scale time-varying nonlinear distributed parameter systems (DPSs). To effectively model such systems, dual extreme learning machine based online spatiotemporal modeling with... 详细信息
来源: 评论
An online learning neural network ensembles with random weights for regression of sequential data stream
收藏 引用
SOFT COMPUTING 2017年 第20期21卷 5919-5937页
作者: Ding, Jinliang Wang, Haitao Li, Chuanbao Chai, Tianyou Wang, Junwei Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang Liaoning Peoples R China Univ Hong Kong Dept Ind & Mfg Syst Engn Hong Kong Hong Kong Peoples R China
An ensemble of neural networks has been proved to be an effective machine learning framework. However, very limited studies in the current literature examined the neural network ensemble for online regression;furtherm... 详细信息
来源: 评论
Comparative study of optimization intelligent models in wastewater quality prediction
Comparative study of optimization intelligent models in wast...
收藏 引用
International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
作者: Yu, Tingting Bai, Yun Chongqing Technol & Business Univ Coll Environm & Resources Chongqing 400067 Peoples R China Chongqing Technol & Business Univ Natl Res Base Intelligent Mfg Serv Chongqing 400067 Peoples R China
Sewage treatment process has the following characteristics: nonlinear, delay etc, and is very complicated to establish the model for its control process. A reasonable model is set up for elaborate prediction effluent ... 详细信息
来源: 评论
Robust compressive features based power quality events classification with Analog-Digital Mixing Network (ADMN)
收藏 引用
NEUROCOMPUTING 2016年 171卷 685-692页
作者: Wang, Min Zhou, Hongjing Yang, Shuyuan Jin, Li Jiao, Licheng Xidian Univ Key Lab Intelligent Percept & Image Understanding Int Res Ctr Intelligent Percept & ComputatMinist Natl Key Lab Radar Signal ProcSch Elect & Elect Xian 710071 Shaanxi Peoples R China
In this paper, an Analog-Digital Mixing Network (ADMN) is advanced for simultaneously collecting data and classifying the Power Quality (PQ) events. Based on recently developed Compressed Sampling (CS) theory, power s... 详细信息
来源: 评论