optical information processing techniques have been developed for information security and fraud deterrent applications. Several encryption methods have been proposed in the literature, which includes optical double r...
详细信息
ISBN:
(纸本)0819462594
optical information processing techniques have been developed for information security and fraud deterrent applications. Several encryption methods have been proposed in the literature, which includes optical double randomphase encryption, polarization encoding, encryption and verification using a multiplexed minimum average correlation energy phase-encrypted filter. All these reports employed a pseudo-random number for the code. But as such numbers are not uncorrelated, the security is not guaranteed because a wrong code may also extract some of the features of the coded information. The objective of the paper is to develop an optical security system employing orthogonal code for protection of personal identification information. As the orthogonal codes have zero or minimum cross-correlation depending on the offset between the codes, a wrong code can not decrypt any information. Here a simple encryption technique is proposed in spatial domain, where the input images are first spread in one dimension using an optical lens and then multiplied by the respective code. Finally, the individual encrypted images are superimposed on a common spatial domain. The individual images can then be decrypted by correlating the received signal with the respective address code. Computer simulation results show that any information containing binary characters can be encrypted and then decrypted successfully. The encrypted images are found to be secure, because no unwanted reproduction is possible without having the appropriate code. The technique also offers an efficient use of the storage or transmission capacity. Therefore, the proposed opticalencryption technique can be applied to securing personal identification or similar information.
暂无评论