咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 1 篇 radar sensing
  • 1 篇 optimal augmenta...
  • 1 篇 signal classific...
  • 1 篇 radar spectrogra...
  • 1 篇 signal to noise ...
  • 1 篇 drone-bird class...
  • 1 篇 aerospace comput...
  • 1 篇 control engineer...
  • 1 篇 neural net archi...
  • 1 篇 rcs
  • 1 篇 radar cross-sect...
  • 1 篇 bayesian optimis...
  • 1 篇 all-weather dron...
  • 1 篇 network architec...
  • 1 篇 optimisation
  • 1 篇 radar receivers
  • 1 篇 bayes methods
  • 1 篇 autonomous aeria...
  • 1 篇 surveillance
  • 1 篇 gaussian noise

机构

  • 1 篇 univ birmingham ...
  • 1 篇 aveillant cambri...

作者

  • 1 篇 jahangir mohamme...
  • 1 篇 harman stephen
  • 1 篇 atkinson george
  • 1 篇 antoniou michail
  • 1 篇 baker chris
  • 1 篇 dale holly

语言

  • 1 篇 英文
检索条件"主题词=optimal augmentation hyperparameters"
1 条 记 录,以下是1-10 订阅
排序:
SNR-dependent drone classification using convolutional neural networks
收藏 引用
IET RADAR SONAR AND NAVIGATION 2022年 第1期16卷 22-33页
作者: Dale, Holly Baker, Chris Antoniou, Michail Jahangir, Mohammed Atkinson, George Harman, Stephen Univ Birmingham Microwave Integrated Syst Lab Birmingham B15 2TT W Midlands England Aveillant Cambridge England
Radar sensing offers a method of achieving 24-h all-weather drone surveillance, but in order to be maximally effective, systems need to be able to discriminate between birds and drones. This work examines drone-bird c... 详细信息
来源: 评论