The synchronisation in wireless cooperative relay networks is impossible to achieve in real environment utilising orthogonal space time block coding. There have been several approaches proposed to mitigate the effect ...
详细信息
The synchronisation in wireless cooperative relay networks is impossible to achieve in real environment utilising orthogonal space time block coding. There have been several approaches proposed to mitigate the effect of synchronisation among the relay nodes at the receiver. All have managed to reduce the inter-symbol interference at the expense of low data rate with high detection complexity. Others achieved full data rate and high cooperative diversity using high decoding complexity that requires a feedback link. In this paper, a new approach is presented that reduces inter-symbol interference, achieves full data rate and full cooperative diversity with low complexity. This uses a new efficient distributed orthogonal space time block coding design with a sub-optimum detection scheme utilising dual relay nodes. This reduces the number of timing misalignments among the relay nodes and minimises the detection complexity. Furthermore, the new proposed method uses linear decoding process to achieve full data rate and full cooperative diversity without the need for any a feedback link. The analytical analysis and simulation results confirmed that sub-optimum approach with the new efficient design are very effective at reducing the lack of synchronisation among the relay nodes at the destination node with low encoding and decoding complexities.
In this paper, we examine orthogonalspace-timeblockcoding with receiver maximal ratio combining (OSTBC/MRC) and selection combining (OSTBC/SC) in multiple-input-multiple-output (MIMO) decode-and-forward (DF) relay ...
详细信息
In this paper, we examine orthogonalspace-timeblockcoding with receiver maximal ratio combining (OSTBC/MRC) and selection combining (OSTBC/SC) in multiple-input-multiple-output (MIMO) decode-and-forward (DF) relay networks with underlay spectrum sharing, considering optimal and suboptimal cases. The secondary network under consideration is equipped with multiple correlated antennas at the source, the relay, and the destination. On the other hand, the primary network is composed of L primary users (PUs), each of which is equipped with multiple correlated antennas. For the considered underlay spectrum sharing, the transmit power condition is related by an interference limit on the primary network and the maximum transmission power in the secondary network. In particular, new exact expressions for the outage probability of the adopted system models are obtained. Moreover, simple asymptotic expressions for the outage probability are provided to enable the characterization of the achievable diversity orders and coding gains. To enhance the secondary network performance, optimal power allocation (PA) between the secondary source and the secondary relay is obtained based on the asymptotic outage probability under the constraints of total allowable transmit power at the secondary user (SU) and maximum allowable interference power limit at the PU. The derived analytical formulas herein are supported by numerical results to clarify the main contributions.
In this paper, a practical multiple input multiple output Dirty paper coding (MIMO-DPC) scheme is designed to cancel the effect of additive interference that is known perfectly to the transmitter. The proposed system ...
详细信息
ISBN:
(纸本)9781467300087
In this paper, a practical multiple input multiple output Dirty paper coding (MIMO-DPC) scheme is designed to cancel the effect of additive interference that is known perfectly to the transmitter. The proposed system uses a trio of encoders - a LDPC code, a vector quantizer implemented as a convolutional decoder and an orthogonalspacetimeblock code (STBC) to achieve temporal coding gain, interference cancelation and spatial diversity, respectively. First, we derive the equivalent noise seen by the receiver using an equivalent lattice based dirty paper code. Then the optimal value of the power inflation factor, which is one of the key system parameters used to minimize the equivalent noise seen by the receiver is derived. Furthermore, we analytically prove that the equivalent noise seen by the receiver tends to 0 for large number of receive antennas. Performance results in the case of various number of receiver antennas are presented and show that significant reduction in bit error probabilities can be obtained over a system that uses no interference cancelation.
暂无评论