咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 17 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 38 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 10 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 生物医学工程(可授...
  • 16 篇 理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 数学
    • 4 篇 生物学
    • 3 篇 物理学
    • 2 篇 地球物理学
    • 2 篇 系统科学
    • 1 篇 地理学
    • 1 篇 生态学
  • 9 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 农林经济管理
  • 3 篇 经济学
    • 2 篇 理论经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学

主题

  • 66 篇 over-parameteriz...
  • 6 篇 parameter estima...
  • 4 篇 non-convex optim...
  • 4 篇 deep learning
  • 3 篇 generalization
  • 3 篇 iterative identi...
  • 3 篇 neural networks
  • 3 篇 stochastic gradi...
  • 3 篇 gradient descent
  • 3 篇 implicit regular...
  • 3 篇 hierarchical ide...
  • 2 篇 algorithmic stab...
  • 2 篇 neural tangent k...
  • 2 篇 nonsmooth optimi...
  • 2 篇 deep neural netw...
  • 2 篇 convolution
  • 2 篇 optimization
  • 2 篇 linear dynamical...
  • 2 篇 generalization b...
  • 2 篇 sub-gradient met...

机构

  • 4 篇 qingdao univ sci...
  • 3 篇 jiangnan univ sc...
  • 2 篇 natl univ def te...
  • 2 篇 north carolina s...
  • 2 篇 univ genoa via o...
  • 2 篇 army engn univ p...
  • 2 篇 acad mil sci ctr...
  • 1 篇 sun yat sen univ...
  • 1 篇 princeton univ d...
  • 1 篇 aristotle univ t...
  • 1 篇 cent china norma...
  • 1 篇 montana state un...
  • 1 篇 baidu inc people...
  • 1 篇 peking univ peop...
  • 1 篇 univ so calif de...
  • 1 篇 univ michigan de...
  • 1 篇 brown univ sch e...
  • 1 篇 wisconsin instit...
  • 1 篇 vanderbilt univ ...
  • 1 篇 department of el...

作者

  • 6 篇 ding feng
  • 2 篇 anguita davide
  • 2 篇 pan zhisong
  • 2 篇 liu xin
  • 2 篇 kim jonghyuk
  • 2 篇 ji yan
  • 2 篇 tao wei
  • 2 篇 cheng jiantong
  • 2 篇 hayat tasawar
  • 2 篇 ma tengyu
  • 2 篇 oneto luca
  • 2 篇 zou difan
  • 1 篇 lee jeong jun
  • 1 篇 cao yuan
  • 1 篇 mackenzie todd a...
  • 1 篇 haochen jeff z.
  • 1 篇 donghi giovanni
  • 1 篇 jiacheng zhuo
  • 1 篇 jiang zhenyu
  • 1 篇 ma xiaoli

语言

  • 63 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=over-parameterization"
66 条 记 录,以下是1-10 订阅
排序:
ISONet: Reforming 1DCNN for aero-engine system inter-shaft bearing fault diagnosis via input spatial over-parameterization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 277卷
作者: Xiang, Qian Wang, Xiaodan Song, Yafei Lei, Lei PLA Rocket Force Univ Engn Lab Intelligent Control Xian 710025 Peoples R China Air Force Engn Univ Coll Air & Missile Def Xian 710051 Peoples R China Air Force Engn Univ Coll Informat & Nav Xian 710077 Peoples R China
Data-driven neural networks have risen as avant-garde approaches to fault diagnosis. However, recent studies have indicated that traditional one-dimensional convolutional neural networks (1DCNNs) exhibit inadequate pe... 详细信息
来源: 评论
Convergence analysis of deep Ritz method with over-parameterization
收藏 引用
NEURAL NETWORKS 2025年 184卷 107110页
作者: Ding, Zhao Jiao, Yuling Lu, Xiliang Wu, Peiying Yang, Jerry Zhijian Wuhan Univ Natl Ctr Appl Math Hubei Wuhan 430072 Peoples R China Wuhan Univ Wuhan Inst Math & AI Wuhan 430072 Peoples R China Wuhan Univ Sch Math & Stat Wuhan 430072 Peoples R China Wuhan Univ Hubei Key Lab Computat Sci Wuhan 430072 Peoples R China Wuhan Univ Sch Artificial Intelligence Wuhan 430072 Peoples R China
The deep Ritz method (DRM) has recently been shown to be a simple and effective method for solving PDEs. However, the numerical analysis of DRM is still incomplete, especially why over-parameterized DRM works remains ... 详细信息
来源: 评论
over-parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron  36
Over-Parameterization Exponentially Slows Down Gradient Desc...
收藏 引用
36th Annual Conference on Learning Theory (COLT)
作者: Xu, Weihang Du, Simon S. Tsinghua Univ Beijing Peoples R China Univ Washington Seattle WA 98195 USA
We revisit the canonical problem of learning a single neuron with ReLU activation under Gaussian input with square loss. We particularly focus on the over-parameterization setting where the student network has n >=... 详细信息
来源: 评论
Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and over-parameterization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2023年 第1期24卷 1-84页
作者: Ma, Jianhao Fattahi, Salar Univ Michigan Dept Ind & Operat Engn Ann Arbor MI 48105 USA Univ Michigan Dept Ind & Operat Engn Ann Arbor MI 48105 USA
In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with t1-loss, where the goal is to recover a low-rank matrix from a li... 详细信息
来源: 评论
Decomposition-based over-parameterization forgetting factor stochastic gradient algorithm for Hammerstein-Wiener nonlinear systems with non-uniform sampling
收藏 引用
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL 2021年 第12期31卷 6007-6024页
作者: Liu, Qilin Xiao, Yongsong Ding, Feng Hayat, Tasawar Jiangnan Univ Sch Internet Things Engn Key Lab Adv Proc Control Light Ind Minist Educ Wuxi Jiangsu Peoples R China Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao Peoples R China King Abdulaziz Univ Dept Math Jeddah Saudi Arabia
This article investigates the parameter estimation problems of Hammerstein-Wiener nonlinear systems with non-uniform sampling. The over-parameterization identification model for the Hammerstein-Wiener nonlinear system... 详细信息
来源: 评论
Iterative Identification Algorithms for Bilinear-in-parameter Systems by Using the over-parameterization Model and the Decomposition
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2018年 第6期16卷 2634-2643页
作者: Chen, Mengting Ding, Feng Alsaedi, Ahmed Hayat, Tasawar Jiangnan Univ Minist Educ Sch Internet Things Engn Key Lab Adv Proc Control Light Ind Wuxi 214122 Peoples R China Qingdao Univ Sci & Technol Coll Automat & Elect Engn Qingdao 266061 Peoples R China King Abdulaziz Univ Fac Sci Dept Math NAAM Res Grp Jeddah Saudi Arabia Quaid I Azam Univ Dept Math Islamabad Pakistan
This paper focuses on the identification problem for a class of bilinear-in-parameter systems with an additive noise modeled by an autoregressive moving average process. By using the over-parameterization model, the s... 详细信息
来源: 评论
TENSOR-ON-TENSOR REGRESSION: RIEMANNIAN OPTIMIZATION, over-parameterization, STATISTICAL-COMPUTATIONAL GAP AND THEIR INTERPLAY
收藏 引用
ANNALS OF STATISTICS 2024年 第6期52卷 2583-2612页
作者: Luo, Yuetian Zhang, Anru r. Univ Chicago Data Sci Inst Chicago IL 60605 USA Duke Univ Dept Biostat & Bioinformat Durham NC USA Duke Univ Dept Comp Sci Durham NC USA
We study the tensor-on-tensor regression, where the goal is to connect tensor responses to tensor covariates with a low Tucker rank parameter tensor/matrix without prior knowledge of its intrinsic rank. We propose the... 详细信息
来源: 评论
COLTR: Semi-Supervised Learning to Rank With Co-Training and over-parameterization for Web Search
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第12期35卷 12542-12555页
作者: Li, Yuchen Xiong, Haoyi Wang, Qingzhong Kong, Linghe Liu, Hao Li, Haifang Bian, Jiang Wang, Shuaiqiang Chen, Guihai Dou, Dejing Yin, Dawei Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China Baidu Inc Beijing 100085 Peoples R China Hong Kong Univ Sci & Technol Guangzhou Thrust Artificial Intelligence Guangzhou 510000 Guangdong Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong 999077 Peoples R China
learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance d... 详细信息
来源: 评论
Expansion-Squeeze-Block: Linear over-parameterization with Shortcut Connections to Train Compact Convolutional Networks  8
Expansion-Squeeze-Block: Linear Over-parameterization with S...
收藏 引用
8th International Conference on Big Data Computing and Communications (BigCom)
作者: Yang, Linzhuo Zhang, Lan Univ Sci & Technol China Dept Comp Sci Hefei Peoples R China
We propose a new structure called ExpansionSqueeze-Block by leveraging over-parameterization to train given compact neural networks. The structure expands the width of convolutional layers and adds shortcut connection... 详细信息
来源: 评论
BOOSTING PRUNED NETWORKS WITH LINEAR over-parameterization  49
BOOSTING PRUNED NETWORKS WITH LINEAR OVER-PARAMETERIZATION
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Qian, Yu Li, Xiaoshuang Cao, Jian Zhang, Jie Li, Hufei Chen, Jue Peking Univ Beijing Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Zhejiang Univ Hangzhou Peoples R China
Structured pruning is a popular technique for reducing the computational cost and memory footprint of neural networks by removing channels. It often leads to a decrease in network accuracy, which can be restored throu... 详细信息
来源: 评论