咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 11 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 5 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 4 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 航空宇航科学与技...
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 11 篇 oversampling alg...
  • 4 篇 machine learning
  • 1 篇 complex underlyi...
  • 1 篇 intrusion detect...
  • 1 篇 rockburst predic...
  • 1 篇 random forest
  • 1 篇 ensemble learnin...
  • 1 篇 mixed synthetic ...
  • 1 篇 sabo-lssvm
  • 1 篇 regression analy...
  • 1 篇 pattern classifi...
  • 1 篇 fosberg fire wea...
  • 1 篇 km -smote
  • 1 篇 ensemble algorit...
  • 1 篇 trees (mathemati...
  • 1 篇 robust-smote tec...
  • 1 篇 synergistic arch...
  • 1 篇 density differen...
  • 1 篇 spatial distribu...
  • 1 篇 power engineerin...

机构

  • 1 篇 qassim univ dept...
  • 1 篇 guilin tourism u...
  • 1 篇 daejeon univ dep...
  • 1 篇 birmingham city ...
  • 1 篇 beijing univ tec...
  • 1 篇 harbin inst tech...
  • 1 篇 beijing univ tec...
  • 1 篇 department of in...
  • 1 篇 univ shanghai sc...
  • 1 篇 south china norm...
  • 1 篇 joongbu univ dep...
  • 1 篇 natl digital swi...
  • 1 篇 univ teknol mala...
  • 1 篇 konkuk univ dept...
  • 1 篇 korea univ sch c...
  • 1 篇 china univ geosc...
  • 1 篇 shenzhen univers...
  • 1 篇 peng cheng lab p...
  • 1 篇 shantou universi...
  • 1 篇 cent south univ ...

作者

  • 1 篇 yan binghao
  • 1 篇 al-rimy bander a...
  • 1 篇 zhou ting
  • 1 篇 xie xuebin
  • 1 篇 song yan
  • 1 篇 li guangkun
  • 1 篇 guo zhuangzhuang
  • 1 篇 dong xinrui
  • 1 篇 chen yanming
  • 1 篇 wang wei
  • 1 篇 hussain saddam
  • 1 篇 han guodong
  • 1 篇 dai feifan
  • 1 篇 lin xinyu
  • 1 篇 ye shengzhao
  • 1 篇 yanping liao
  • 1 篇 al-shqeerat khal...
  • 1 篇 lai yingxu
  • 1 篇 xinyu chen
  • 1 篇 xue yiguo

语言

  • 11 篇 英文
检索条件"主题词=oversampling algorithm"
11 条 记 录,以下是1-10 订阅
排序:
ADDPC-SMOTE: An oversampling algorithm Based on Density Difference Peak Clustering and Spatial Distribution Entropy
收藏 引用
IEEE ACCESS 2023年 11卷 108152-108166页
作者: Wang, Wei Liu, Fen Guilin Tourism Univ Business Sch Guilin 541006 Peoples R China
Most of the existing oversampling algorithms based on clustering do not consider the spatial distribution of Majority class, and it is easy to overlap classes and ignore important information points when synthesizing ... 详细信息
来源: 评论
Improved CBSO: A distributed fuzzy-based adaptive synthetic oversampling algorithm for imbalanced judicial data
收藏 引用
INFORMATION SCIENCES 2021年 569卷 70-89页
作者: Dai, Feifan Song, Yan Si, Weiyun Yang, Guisong Hu, Jianhua Wang, Xinli Univ Shanghai Sci & Technol Dept Control Sci & Engn Shanghai 200093 Peoples R China Univ Shanghai Sci & Technol Sch Sci Shanghai 200093 Peoples R China
Imbalanced data problem is a big challenge for judicial data analysis since it often leads to a low accuracy of the data classification. Synthesizing new samples by means of oversampling is a useful method to handle t... 详细信息
来源: 评论
VCOS: A Novel Synergistic oversampling algorithm in Binary Imbalance Classification
收藏 引用
IEEE ACCESS 2019年 7卷 145435-145443页
作者: Zhang, Chunkai Zhou, Ting Deng, Yepeng Harbin Inst Technol Sch Comp Sci & Technol Shenzhen 518000 Guangdong Peoples R China Peng Cheng Lab Shenzhen 518000 Guangdong Peoples R China
Learning from class-imbalanced data is a challenging problem as standard classification algorithms are designed to handle balanced class distributions. Scholars solve this problem by modifying classifiers or and gener... 详细信息
来源: 评论
A study on the characteristics of applying oversampling algorithms to Fosberg Fire-Weather Index (FFWI) data
收藏 引用
SMART STRUCTURES AND SYSTEMS 2024年 第1期34卷 9-15页
作者: Kim, Sang Yeob Lee, Dongsoo Yu, Jung-Doung Yoon, Hyung-Koo Konkuk Univ Dept Fire & Disaster Prevent 268 Chungwon daero Chungju Si 27478 Chungcheongbuk South Korea Korea Univ Sch Civil Environm & Architectural Engn 145 Anam ro Seoul 02841 South Korea Joongbu Univ Dept Civil Engn Goyang 10279 South Korea Daejeon Univ Dept Construct & Disaster Prevent Engn 62 Daehak ro Daejeon 34520 South Korea
oversampling algorithms are methods employed in the field of machine learning to address the constraints associated with data quantity. This study aimed to explore the variations in reliability as data volume is progr... 详细信息
来源: 评论
Electric theft detection in advanced metering infrastructure using Jaya optimized combined Kernel-Tree boosting classifier-A novel sequentially executed supervised machine learning approach
收藏 引用
IET GENERATION TRANSMISSION & DISTRIBUTION 2022年 第6期16卷 1257-1275页
作者: Hussain, Saddam Mustafa, Mohd Wazir Al-Shqeerat, Khalil Hamdi Ateyeh Al-rimy, Bander Ali Saleh Saeed, Faisal Univ Teknol Malaysia Sch Elect Engn Johor Baharu 81310 Malaysia Qassim Univ Dept Comp Sci Coll Comp Buraydah Saudi Arabia Univ Teknol Malaysia Sch Comp Fac Engn Johor Baharu 81310 Johor Malaysia Birmingham City Univ Sch Comp & Digital Technol Birmingham W Midlands England
This paper presents a novel, sequentially executed supervised machine learning-based electric theft detection framework using a Jaya-optimized combined Kernel and Tree Boosting (KTBoost) classifier. It utilizes the in... 详细信息
来源: 评论
A Novel Region Adaptive SMOTE algorithm for Intrusion Detection on Imbalanced Problem  3
A Novel Region Adaptive SMOTE Algorithm for Intrusion Detect...
收藏 引用
3rd IEEE International Conference on Computer and Communications (ICCC)
作者: Yan, BingHao Han, GuoDong Sun, MeiDong Ye, ShengZhao Natl Digital Switching Syst Engn & Technol Res Ct Zhengzhou Henan Peoples R China
Machine learning techniques play a crucial part in intrusion detection and greatly change the original intrusion detection methods. How to use machine learning technologies to achieve better detection results is impor... 详细信息
来源: 评论
Intrusion Detection System for Industrial Control Systems Based on Imbalanced Data  15
Intrusion Detection System for Industrial Control Systems Ba...
收藏 引用
IEEE 15th International Symposium on Autonomous Decentralized Systems (ISADS)
作者: Dong, Xinrui Lai, Yingxu Beijing Univ Technol Fac Informat Technol Beijing Peoples R China Beijing Univ Technol Fac Informat Technol Engn Res Ctr Intelligent Percept & Autonomous Con Minist Educ Beijing Peoples R China
The integration of industrialization and informatization has exposed industrial control systems (ICSs) to increasingly serious security challenges. Currently, the mainstream method to protect the security of ICSs is i... 详细信息
来源: 评论
Application of KM-SMOTE for rockburst intelligent prediction
收藏 引用
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY 2023年 138卷
作者: Liu, Qiushi Xue, Yiguo Li, Guangkun Qiu, Daohong Zhang, Weimeng Guo, Zhuangzhuang Li, Zhiqiang Shandong Univ Geotech & Struct Engn Res Ctr Jinan 250061 Peoples R China China Univ Geosci Beijing Sch Engn & Technol Beijing 100083 Peoples R China
Class-imbalanced is a common phenomenon in rockburst data, and the prediction of rockburst intensity through intelligent methods requires a balanced dataset. This fact presents challenges for standard classification a... 详细信息
来源: 评论
Research on Hard Rock Pillar Stability Prediction Based on SABO-LSSVM Model
收藏 引用
APPLIED SCIENCES-BASEL 2024年 第17期14卷
作者: Xie, Xuebin Zhang, Huaxi Cent South Univ Sch Resources & Safety Engn Changsha 410083 Peoples R China
The increase in mining depth necessitates higher strength requirements for hard rock pillars, making mine pillar stability analysis crucial for pillar design and underground safety operations. To enhance the accuracy ... 详细信息
来源: 评论
Employee Attrition Classification Model Based on Stacking algorithm
收藏 引用
Psychology Research 2023年 第6期13卷 279-285页
作者: CHEN Yanming LIN Xinyu ZHAN Kunye Shantou University South China Normal University Shenzhen University
This paper aims to build an employee attrition classification model based on the Stacking *** algorithm is applied to address the issue of data imbalance and the Randomforest feature importance ranking method is used ... 详细信息
来源: 评论