咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 parallel process...
  • 1 篇 multiple objecti...
  • 1 篇 parallelism
  • 1 篇 communities
  • 1 篇 graph analytics
  • 1 篇 memory managemen...
  • 1 篇 distributed-memo...
  • 1 篇 big data
  • 1 篇 low-diameter net...
  • 1 篇 search engines
  • 1 篇 small-world netw...
  • 1 篇 scalable multiob...
  • 1 篇 pulp
  • 1 篇 web crawl partit...
  • 1 篇 overall memory g...
  • 1 篇 graph theory
  • 1 篇 in-memory graph ...
  • 1 篇 resource allocat...
  • 1 篇 skewed degree di...
  • 1 篇 parallel-memory-...

机构

  • 1 篇 sandia natl labs...
  • 1 篇 penn state univ ...

作者

  • 1 篇 rajamanickam siv...
  • 1 篇 madduri kamesh
  • 1 篇 slota george m.

语言

  • 1 篇 英文
检索条件"主题词=partitioning-using-label propagation"
1 条 记 录,以下是1-10 订阅
排序:
PULP: Scalable Multi-Objective Multi-Constraint partitioning for Small-World Networks  2
PULP: Scalable Multi-Objective Multi-Constraint Partitioning...
收藏 引用
IEEE International Conference on Big Data
作者: Slota, George M. Madduri, Kamesh Rajamanickam, Sivasankaran Penn State Univ Dept Comp Sci & Engn University Pk PA 16802 USA Sandia Natl Labs Scalable Algorithms Dept Albuquerque NM 87185 USA
We present PULP, a parallel and memory-efficient graph partitioning method specifically designed to partition low-diameter networks with skewed degree distributions. Graph partitioning is an important Big Data problem... 详细信息
来源: 评论