咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 cyber attacks
  • 1 篇 power grids
  • 1 篇 malicious data v...
  • 1 篇 power systems
  • 1 篇 power system sta...
  • 1 篇 data-driven solu...
  • 1 篇 sensor data
  • 1 篇 power engineerin...
  • 1 篇 security of data
  • 1 篇 energy managemen...
  • 1 篇 cyber-attacks
  • 1 篇 data detection a...
  • 1 篇 power system se ...
  • 1 篇 unknown state va...
  • 1 篇 power system sec...
  • 1 篇 binary decision ...
  • 1 篇 fdia
  • 1 篇 learning (artifi...
  • 1 篇 power grid monit...
  • 1 篇 power system mea...

机构

  • 1 篇 univ florida dep...
  • 1 篇 florida state un...

作者

  • 1 篇 zografopoulos io...
  • 1 篇 jin yier
  • 1 篇 liu xiaorui
  • 1 篇 sayghe ali
  • 1 篇 hu yaodan
  • 1 篇 konstantinou cha...
  • 1 篇 dutta raj gautam

语言

  • 1 篇 英文
检索条件"主题词=power system SE algorithms"
1 条 记 录,以下是1-10 订阅
排序:
Survey of machine learning methods for detecting false data injection attacks in power systems
收藏 引用
IET SMART GRID 2020年 第5期3卷 581-595页
作者: Sayghe, Ali Hu, Yaodan Zografopoulos, Ioannis Liu, XiaoRui Dutta, Raj Gautam Jin, Yier Konstantinou, Charalambos Florida State Univ Ctr Adv Power Syst FAMU FSU Coll Engn Tallahassee FL 32306 USA Univ Florida Dept Elect & Comp Engn Gainesville FL USA
Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber-attacks ... 详细信息
来源: 评论