There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehensi...
详细信息
There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally. (C) 2015 Elsevier Ltd. All rights reserved.
predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article p...
详细信息
predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature;the first neuroscience-related application of predictive coding to explaining the function of the retina;and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology. (C) 2016 Elsevier Inc. All rights reserved.
This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights ...
详细信息
This article investigates the processing of vestibular information by interpreting current experimental knowledge in the framework of predictive coding. We demonstrate that this theoretical framework give us insights into several important questions regarding specific properties of the vestibular system. Particularly, we discuss why the vestibular network is more spatially distributed than other sensory networks, why a mismatch in the vestibular system is more clinically disturbing than in other sensory systems, why the vestibular system is only marginally affected by most cerebral lesions, and whether there is a primary vestibular cortex. The use of predictive coding as a theoretical framework further points to some problems with the current interpretation of results that are gained from vestibular stimulation studies. In particular, we argue that cortical responses of vestibular stimuli cannot be interpreted in the same way as responses of other sensory modalities. Finally, we discuss the implications of the new insights, hypotheses and problems that were identified in this review on further directions of research of vestibular information processing. (C) 2016 Elsevier Ltd. All rights reserved.
BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posit...
详细信息
BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. METHODS: In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback(listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event- related potentials during the talk/ listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case- control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. RESULTS: N1 suppression to self produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d= 1.14) and schizophrenia(Cohen's d=.85). CONCLUSIONS: Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia.
The brain tracks and encodes multi-level speech features during spoken language processing. It is evident that this speech tracking is dominant at low frequencies (200 and 400 ms post-feature, respectively). Theta-ban...
详细信息
The brain tracks and encodes multi-level speech features during spoken language processing. It is evident that this speech tracking is dominant at low frequencies (<8 Hz) including delta and theta bands. Recent research has demonstrated distinctions between delta- and theta-band tracking but has not elucidated how they differentially encode speech across linguistic levels. Here, we hypothesised that delta-band tracking encodes prediction errors (enhanced processing of unexpected features) while theta-band tracking encodes neural sharpening (enhanced processing of expected features) when people perceive speech with different linguistic contents. EEG responses were recorded when normal-hearing participants attended to continuous auditory stimuli that contained different phonological/morphological and semantic contents: (1) real-words, (2) pseudo-words and (3) time-reversed speech. We employed multivariate temporal response functions to measure EEG reconstruction accuracies in response to acoustic (spectrogram), phonetic and phonemic features with the partialling procedure that singles out unique contributions of individual features. We found higher delta-band accuracies for pseudo-words than real-words and time-reversed speech, especially during encoding of phonetic features. Notably, individual time-lag analyses showed that significantly higher accuracies for pseudo-words than real-words started at early processing stages for phonetic encoding (<100 ms post-feature) and later stages for acoustic and phonemic encoding (>200 and 400 ms post-feature, respectively). Theta-band accuracies, on the other hand, were higher when stimuli had richer linguistic content (real-words > pseudo-words > time-reversed speech). Such effects also started at early stages (<100 ms post-feature) during encoding of all individual features or when all features were combined. We argue these results indicate that delta-band tracking may play a role in predictive coding leading to greater tracki
Background: Sensory disconnection is a key feature of sleep and anaesthesia. We have proposed that predictive coding offers a framework for understanding the mechanisms of disconnection. Low doses of ketamine that do ...
详细信息
Background: Sensory disconnection is a key feature of sleep and anaesthesia. We have proposed that predictive coding offers a framework for understanding the mechanisms of disconnection. Low doses of ketamine that do not induce disconnection should thus diminish predictive coding, but not abolish ***: Ketamine was administered to 14 participants up to a blood concentration of 0.3 mg ml -1 Participants were played a series of tones comprising a roving oddball sequence while electroencephalography evoked response potentials were recorded. We fit a Bayesian observer model to the tone sequence, correlating neural activity with the prediction errors generated by the model using linear mixed effects models and cluster-based statistics. Results: Ketamine modulated prediction errors associated with the transition of one tone to the next (transitional probability), but not how often tones changed (environmental volatility), of the system. Transitional probability was reduced when blood concentrations of ketamine were increased to 0.2-0.3 mg ml -1 (96-208 ms, P=0.003);however, correlates of prediction error were still evident in the electroencephalogram (124-168 ms, P=0.003). Prediction errors related to environmental volatility were associated with electroencephalographic activity before ketamine (224-284 ms, P=0.028) and during 0.2-0.3 mg ml -1 ketamine (108-248 ms, P=0.003). At this subanaesthetic dose, ketamine did not exert a dose-dependent modulation of prediction ***: Subanaesthetic dosing of ketamine reduced correlates of predictive coding but did not eliminate them. Future studies should evaluate whether states of sensory disconnection, including anaesthetic doses of ketamine, are associated with a complete absence of predictive coding *** trial registration: NCT03284307.
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive c...
详细信息
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding.
Increasing evidence indicates that the brain predicts sensory input based on past experiences, importantly constraining how we experience the world. Despite a growing interest on this framework, known as predictive co...
详细信息
Increasing evidence indicates that the brain predicts sensory input based on past experiences, importantly constraining how we experience the world. Despite a growing interest on this framework, known as predictive coding, most of such approaches to multiple psychological domains continue to be theoretical or primarily provide correlational evidence. We here explored the neural basis of predictive processing using noninvasive brain stimulation and provide causal evidence of frequency-specific modulations in humans. Participants received 20 Hz (associated with top-down/predictions), 50 Hz (associated with bottom-up/prediction errors), or sham transcranial alternating current stimulation on the left dorsolateral prefrontal cortex while performing a social perception task in which facial expression predictions were induced and subsequently confirmed or violated. Left prefrontal 20 Hz stimulation reinforced stereotypical predictions. In contrast, 50 Hz and sham stimulation failed to yield any significant behavioral effects. Moreover, the frequency-specific effect observed was further supported by electroencephalography data, which showed a boost of brain activity at the stimulated frequency band. These observations provide causal evidence for how predictive processing may be enabled in the human brain, setting up a needed framework to understand how it may be disrupted across brain-related conditions and potentially restored through noninvasive methods.
We present an end -to -end architecture for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting in a...
详细信息
We present an end -to -end architecture for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting in a task -independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment. Second, we apply our model to a more complex active vision task, whereby an agent actively samples its visual environment to gather information. We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes. We further show that using these representations for downstream classification leads to superior data efficiency and learning speed compared to other baselines while maintaining lower parameter complexity. Finally, the modular structure of our model facilitates interpretability, allowing us to probe its internal mechanisms and representations during exploration.
predictive coding models, such as the 'free-energy principle' (FEP), have recently been discussed in relation to how interoceptive (afferent visceral feedback) signals update predictions about the state of the...
详细信息
predictive coding models, such as the 'free-energy principle' (FEP), have recently been discussed in relation to how interoceptive (afferent visceral feedback) signals update predictions about the state of the body, thereby driving autonomic mediation of homeostasis. This study appealed to Interoceptive inference', under the FEP, to seek new insights into autonomic (dys)function and brain-body integration by examining the relationship between cardiac interoception and autonomic cardiac control in healthy controls and patients with forms of orthostatic intolerance (OI);to (i) seek empirical support for interoceptive inference and (ii) delineate if this relationship was sensitive to increased interoceptive prediction error in OI patients during head-up tilt (HUT)/symptom provocation. Measures of interoception and heart rate variability (HRV) were recorded whilst supine and during HUT in healthy controls (N = 20), postural tachycardia syndrome (PoTS, N = 20) and vasovagal syncope (VVS, N = 20) patients. Compared to controls, interoceptive accuracy was reduced in both OI groups. Healthy controls' interoceptive sensibility positively correlated with HRV whilst supine. Conversely, both OI groups' interoceptive awareness negatively correlated with HRV during HUT. Our pilot study offers initial support for interoceptive inference and suggests OI cohorts share a central pathophysiology underlying interoceptive deficits expressed across distinct cardiovascular autonomic pathophysiology. From a predictive coding perspective, OI patients' data indicates a failure to attenuate/modulate ascending interoceptive prediction errors, reinforced by the concomitant failure to engage autonomic reflexes during HUT. Our findings offer a potential framework for conceptualising how the human nervous system maintains homeostasis and how both central and autonomic processes are ultimately implicated in dysautonomia.
暂无评论