Computational modeling builds mathematical models of cognitive phenomena to simulate patterns of perception, decision-making, and belief updating. These models mathematically represent the information processing by co...
详细信息
Computational modeling builds mathematical models of cognitive phenomena to simulate patterns of perception, decision-making, and belief updating. These models mathematically represent the information processing by combining an anterior probability distribution, a likelihood function and a set of parameters and hyperparameters. Their use popularized the conception of a nervous system functioning as a predictive machine, or "bayesian brain". Applied to psychiatry, these models seek to explain how psychiatric dysfunction may emerge mechanistically. Despite the significance of emotions for cognitive phenomena and for psychiatric disorders, few computational models offer mathematical representations of emotion or incorporate emotional factors into their modeling parameters. We present here some computational hypotheses for the modeling of affective parameters, and we suggest that computational psychiatry would benefit from these modeling parameters. (C) 2020
IntroductionThe N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic transmission and is associated with various neurological and psychiatric disorders. Recently, a novel form of postsynaptic plasti...
详细信息
IntroductionThe N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic transmission and is associated with various neurological and psychiatric disorders. Recently, a novel form of postsynaptic plasticity known as NMDAR-based short-term postsynaptic plasticity (STPP) has been identified. It has been suggested that long-lasting glutamate binding to NMDAR allows for the retention of input information in brain slices up to 500 ms, leading to response facilitation. However, the impact of STPP on the dynamics of neuronal populations remains *** this study, we incorporated STPP into a continuous attractor neural network (CANN) model to investigate its effects on neural information encoding in populations of neurons. Unlike short-term facilitation, a form of presynaptic plasticity, the temporally enhanced synaptic efficacy resulting from STPP destabilizes the network state of the CANN by increasing its *** findings demonstrate that the inclusion of STPP in the CANN model enables the network state to predictively respond to a moving stimulus. This nontrivial dynamical effect facilitates the tracking of the anticipated stimulus, as the enhanced synaptic efficacy induced by STPP enhances the system's *** discovered STPP-based mechanism for sensory prediction provides valuable insights into the potential development of brain-inspired computational algorithms for prediction. By elucidating the role of STPP in neural population dynamics, this study expands our understanding of the functional implications of NMDAR-related plasticity in information processing within the *** incorporation of STPP into a CANN model highlights its influence on the mobility and predictive capabilities of neural networks. These findings contribute to our knowledge of STPP-based mechanisms and their potential applications in developing computational algorithms for sensory prediction.
Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, pred...
详细信息
Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.
The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming o...
详细信息
The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming or also in using internal models for the prediction of forthcoming actions is still unclear. We used cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of healthy adults in using previously learned expectations in an action prediction task. In a first learning phase of this task, participants were exposed to different levels of associations between specific actions and contextual elements, to induce the formation of either strongly or moderately informative expectations. In a following testing phase, which assessed the use of these expectations for predicting ambiguous (i.e. temporally occluded) actions, we delivered ctDCS. Results showed that anodic, compared to sham, ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. Since ctDCS was delivered during the testing phase, that is after expectations were established, our findings suggest that the cerebellum is causally involved in using internal models (and not just in generating them). This encourages the exploration of the clinical effects of ctDCS to compensate poor use of predictive internal models for social perception.
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise throu...
详细信息
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various para...
详细信息
The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various paradigms, these paradigms usually incorporate many repetitions of the same deviant, thus leaving open whether both components vary as a function of the deviant's position in a series of deviant stimuli-i.e. whether they are subject to qualitative/quantitative habituation from one instantiation of a deviant to the next. This is so because the detection of mismatch negativity/P3a in the event-related EEG potential requires an averaging over dozens or hundreds of stimuli, i.e. over many instantiations of the deviant per participant. The present study addresses this research gap. We used a two-tone oddball paradigm implementing only a small number of (deviant) stimuli per participant, but applying it to a large number of participants (n > 230). Our data show that the mismatch negativity amplitude exhibits no decrease as a function of the deviant's position in a series of (standard and) deviant stimuli. Importantly, only after the very first deviant stimulus, a distinct P3a could be detected, indicative of an orienting reaction and an attention shift, and thus documenting a dissociation of mismatch negativity and P3a.
The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world;an extensively studi...
详细信息
The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world;an extensively studied phenomenon commonly referred to as predictive coding. predictive coding posits that the brain is continuously extracting regularities from the environment to generate predictions. These predictions are then used to supress neuronal responses to redundant information, filtering those inputs, which then automatically enhances the remaining, unexpected inputs. We have recently described the ability of auditory neurons to generate predictions about expected sensory inputs by detecting their absence in an oddball paradigm using omitted tones as deviants. Here, we studied the responses of individual neurons to omitted tones by presenting individual sequences of repetitive pure tones, using both random and periodic omissions, presented at both fast and slow rates in the inferior colliculus and auditory cortex neurons of anesthetized rats. Our goal was to determine whether feature-specific dependence of these predictions exists. Results showed that omitted tones could be detected at both high (8 Hz) and slow repetition rates (2 Hz), with detection being more robust at the non-lemniscal auditory pathway.
As we move through our environment, our visual system is presented with optic flow, a potentially important cue for perception, navigation and postural control. How does the brain anticipate the optic flow that arises...
详细信息
As we move through our environment, our visual system is presented with optic flow, a potentially important cue for perception, navigation and postural control. How does the brain anticipate the optic flow that arises as a consequence of our own movement? Converging evidence suggests that stimuli are processed differently by the brain if occurring as a consequence of self-initiated actions, compared to when externally generated. However, this has mainly been demonstrated with auditory stimuli. It is not clear how this occurs with optic flow. We measured behavioural, neurophysiological and head motion responses of 29 healthy participants to radially expanding, vection-inducing optic flow stimuli, simulating forward transitional motion, which were either initiated by the participant's own button-press ("self-initiated flow") or by the computer ("passive flow"). Self-initiation led to a prominent and left-lateralized inhibition of the flow-evoked posterior event-related alpha desynchronization (ERD), and a stabilisation of postural responses. Neither effect was present in control button-press-only trials, without optic flow. Additionally, self-initiation also produced a large event-related potential (ERP) negativity between 130-170 ms after optic flow onset. Furthermore, participants' visual induced motion sickness (VIMS) and vection intensity ratings correlated positively across the group - although many participants felt vection in the absence of any VIMS, none reported the opposite combination. Finally, we found that the simple act of making a button press leads to a detectable head movement even when using a chin rest. Taken together, our results indicate that the visual system is capable of predicting optic flow when self-initiated, to affect behaviour. (c) 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
During social interactions, we constantly learn about the thoughts, feelings, and personality traits of our interaction partners. Learning in social interactions is critical for bond formation and acquiring knowledge....
详细信息
During social interactions, we constantly learn about the thoughts, feelings, and personality traits of our interaction partners. Learning in social interactions is critical for bond formation and acquiring knowledge. Importantly, this type of learning is typically bi-directional, as both partners learn about each other simultaneously. Here we review the literature on social learning and propose a new computational and neural model characterizing mutual predictions that take place within and between interactions. According to our model, each partner in the interaction attempts to minimize the prediction error of the self and the interaction partner. In most cases, these inferential models become similar over time, thus enabling mutual understanding to develop. At the neural level, this type of social learning may be supported by interbrain plasticity, defined as a change in interbrain coupling over time in neural networks associated with social learning, among them the mentalizing network, the observation-execution system, and the hippocampus. The mutual prediction model constitutes a promising means of providing empirically verifiable accounts of how relationships develop over time.
Individual differences in perception are widespread. Considering inter-individual variability, synesthetes experience stable additional sensations;schizophrenia patients suffer perceptual deficits in, eg, perceptual o...
详细信息
Individual differences in perception are widespread. Considering inter-individual variability, synesthetes experience stable additional sensations;schizophrenia patients suffer perceptual deficits in, eg, perceptual organization (alongside hallucinations and delusions). Is there a unifying principle explaining inter-individual variability in perception? There is good reason to believe perceptual experience results from inferential processes whereby sensory evidence is weighted by prior knowledge about the world. Perceptual variability may result from different precision weighting of sensory evidence and prior knowledge. We tested this hypothesis by comparing visibility thresholds in a perceptual hysteresis task across medicated schizophrenia patients (N = 20), synesthetes (N = 20), and controls (N = 26). Participants rated the subjective visibility of stimuli embedded in noise while we parametrically manipulated the availability of sensory evidence. Additionally, precise long-term priors in synesthetes were leveraged by presenting either synesthesia-inducing or neutral stimuli. Schizophrenia patients showed increased visibility thresholds, consistent with overreliance on sensory evidence. In contrast, synesthetes exhibited lowered thresholds exclusively for synesthesia-inducing stimuli suggesting high-precision long-term priors. Additionally, in both synesthetes and schizophrenia patients explicit, short-term priors-introduced during the hysteresis experiment-lowered thresholds but did not normalize perception. Our results imply that perceptual variability might result from differences in the precision afforded to prior beliefs and sensory evidence, respectively.
暂无评论