Bayesian inference for the superposition of nonhomogeneous Poisson processes is studied. A Markov-chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For...
详细信息
Bayesian inference for the superposition of nonhomogeneous Poisson processes is studied. A Markov-chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, a latent variable is introduced that indicates which component of the superposition model gives rise to the failure. This data-augmentation approach facilitates specification of the transitional kernel in the Markov chain. Moreover, new Bayesian tests are developed for the full superposition model against simpler submodels. Model determination by a predictive likelihood approach is studied. A numerical example based on a real data set is given.
暂无评论