咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学
  • 2 篇 工学
    • 2 篇 软件工程
    • 1 篇 计算机科学与技术...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 3 篇 preflow-push alg...
  • 1 篇 minimum cut prob...
  • 1 篇 maximum flow
  • 1 篇 network flows
  • 1 篇 90c35
  • 1 篇 68q20
  • 1 篇 graph algorithm
  • 1 篇 dynamic tree
  • 1 篇 68p05
  • 1 篇 68r05
  • 1 篇 vertex coloring
  • 1 篇 68q25
  • 1 篇 current-edge pro...
  • 1 篇 maximum flow pro...
  • 1 篇 network flow
  • 1 篇 90b10
  • 1 篇 scaling
  • 1 篇 68q22

机构

  • 1 篇 bogazici univ de...
  • 1 篇 gte labs inc wal...
  • 1 篇 ibm thomas j wat...
  • 1 篇 indian inst tech...
  • 1 篇 mit sloan sch ma...

作者

  • 1 篇 kara gokcehan
  • 1 篇 aggarwal cc
  • 1 篇 hao jx
  • 1 篇 joseph cheriyan
  • 1 篇 ahuja rk
  • 1 篇 orlin jb
  • 1 篇 ozturan can
  • 1 篇 torben hagerup
  • 1 篇 kurt mehlhorn

语言

  • 3 篇 英文
检索条件"主题词=preflow-push algorithm"
3 条 记 录,以下是1-10 订阅
排序:
algorithm 1002: Graph Coloring Based Parallel push-relabel algorithm for the Maximum Flow Problem
收藏 引用
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 2019年 第4期45卷 1–28页
作者: Kara, Gokcehan Ozturan, Can Bogazici Univ Dept Comp Engn TR-34342 Istanbul Turkey
The maximum flow problem is one of the most common network flow problems. This problem involves finding the maximum possible amount of flow between two designated nodes on a network with arcs having flow capacities. T... 详细信息
来源: 评论
Diagnosing infeasibilities in network flow problems
收藏 引用
MATHEMATICAL PROGRAMMING 1998年 第3期81卷 263-280页
作者: Aggarwal, CC Ahuja, RK Hao, JX Orlin, JB MIT Sloan Sch Management Cambridge MA 02139 USA GTE Labs Inc Waltham MA 02154 USA Indian Inst Technol Dept Ind & Management Engn Kanpur 208016 Uttar Pradesh India IBM Thomas J Watson Res Ctr Hawthorne NY 10532 USA
We consider the problem of finding a feasible flow in a directed network G = (N,A) in which each node i is an element of N has a supply b(i), and each are (i,j) is an element of A has a zero lower bound on flow and an... 详细信息
来源: 评论
An
收藏 引用
SIAM Journal on Computing 1996年 第6期25卷 1144-1170页
作者: Joseph Cheriyan Torben Hagerup Kurt Mehlhorn
We show that a maximum flow in a network with n vertices can be computed deterministically in O(n<span style="position: a