Tissue scaffolds need to have anisotropic mechanical properties and a porous structure to meet the needs of different tissues and organs. This report presents results of a study on an especially-designed 3D printing m...
详细信息
Tissue scaffolds need to have anisotropic mechanical properties and a porous structure to meet the needs of different tissues and organs. This report presents results of a study on an especially-designed 3D printing method with oxidized nanocellulose and gelatin, analyzes the servo principle of pneumatic condensing extrusion 3D printer, and proposes a hexagonal algorithm. For the purpose of this study, a printing process file was written by G code, physical and mechanical performance of the 3D scaffolds was evaluated with Solidworks simulation, the porous structure and pressure-pull performance of the printed 3D scaffolds was observed by SEM, and experiments were conducted to measure their bio-compatibility. The study draws the conclusion that scaffolds thus printed have a highly porous structure and anisotropic mechanical properties.
An inkjet printing system for printed electronics was developed. In this study, a printing algorithm was mainly discussed. In order to print a pattern image at a target location, we developed a hardware and software a...
详细信息
An inkjet printing system for printed electronics was developed. In this study, a printing algorithm was mainly discussed. In order to print a pattern image at a target location, we developed a hardware and software algorithm for determining the distances between a substrate camera and the selected nozzles. We implemented a vector-printing algorithm where AutoCAD dxf file was used for XY motion control and for printing. We also developed printing method using bitmap images. The technical issues in using CAD drawings and bitmap images were discussed.
暂无评论