咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 34 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 85 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 13 篇 信息与通信工程
    • 12 篇 软件工程
    • 11 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 15 篇 理学
    • 8 篇 数学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 97 篇 probabilistic ma...
  • 15 篇 collaborative fi...
  • 12 篇 recommender syst...
  • 8 篇 recommendation s...
  • 8 篇 social recommend...
  • 7 篇 recommender syst...
  • 5 篇 convolutional ne...
  • 4 篇 deep learning
  • 4 篇 probabilistic lo...
  • 4 篇 social network
  • 4 篇 retweeting behav...
  • 3 篇 matrix factoriza...
  • 3 篇 task analysis
  • 3 篇 implicit feedbac...
  • 3 篇 task recommendat...
  • 3 篇 predictive model...
  • 3 篇 matrix decomposi...
  • 3 篇 crowdsourcing
  • 3 篇 recommendation s...
  • 2 篇 variational infe...

机构

  • 4 篇 chinese acad sci...
  • 3 篇 univ chinese aca...
  • 3 篇 dalian neusoft i...
  • 2 篇 rutgers state un...
  • 2 篇 guangxi normal u...
  • 2 篇 chinese acad sci...
  • 2 篇 univ cent arkans...
  • 2 篇 fuzhou univ sch ...
  • 2 篇 suzhou univ sci ...
  • 2 篇 shandong normal ...
  • 2 篇 national enginee...
  • 2 篇 beijing jiaotong...
  • 2 篇 cent china norma...
  • 2 篇 univ chinese aca...
  • 2 篇 cent china norma...
  • 1 篇 wuhan university...
  • 1 篇 anhui univ anhui...
  • 1 篇 natl inst techno...
  • 1 篇 hanoi univ sci &...
  • 1 篇 natl inst teleco...

作者

  • 3 篇 zheng dongxia
  • 3 篇 liu yongjian
  • 3 篇 sheng victor s.
  • 3 篇 iltaf naima
  • 3 篇 jiguang liang
  • 3 篇 khan zafran
  • 3 篇 xiong feng
  • 3 篇 xie qing
  • 3 篇 li ning
  • 3 篇 liang jiguang
  • 2 篇 chen xiaojie
  • 2 篇 bai shuo
  • 2 篇 jing liping
  • 2 篇 duan yufeng
  • 2 篇 zhao pengpeng
  • 2 篇 liu yanchi
  • 2 篇 ma jun
  • 2 篇 kai zhang
  • 2 篇 liu fangai
  • 2 篇 da silva eliezer...

语言

  • 97 篇 英文
检索条件"主题词=probabilistic matrix factorization"
97 条 记 录,以下是1-10 订阅
排序:
probabilistic matrix factorization with personalized differential privacy
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2019年 183卷 104864-000页
作者: Zhang, Shun Liu, Laixiang Chen, Zhili Zhong, Hong Anhui Univ Sch Comp Sci & Technol Hefei 230601 Anhui Peoples R China Anhui Univ Anhui Engn Lab IoT Secur Technol Hefei 230601 Anhui Peoples R China
probabilistic matrix factorization (PMF) plays a crucial role in recommendation systems. It requires a large amount of user data (such as user shopping records and movie ratings) to predict personal preferences, and t... 详细信息
来源: 评论
probabilistic matrix factorization Recommendation of Self-Attention Mechanism Convolutional Neural Networks With Item Auxiliary Information
收藏 引用
IEEE ACCESS 2020年 8卷 208311-208321页
作者: Zhang, Chenkun Wang, Cheng Huaqiao Univ Coll Comp Sci & Technol Xiamen 361021 Peoples R China
To solve the problem of data sparsity in recommendation systems, this paper proposes a probabilistic matrix factorization recommendation of self-attention mechanism convolutional neural networks with item auxiliary in... 详细信息
来源: 评论
Location-Aware Service Recommendation With Enhanced probabilistic matrix factorization
收藏 引用
IEEE ACCESS 2018年 6卷 62815-62825页
作者: Yin, Yuyu Chen, Lu Xu, Yueshen Wan, Jian Hangzhou Dianzi Univ Sch Comp Hangzhou 310018 Zhejiang Peoples R China Minist Educ Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Zhejiang Peoples R China Xidian Univ Sch Comp Sci & Technol Xian 710126 Shaanxi Peoples R China Zhejiang Univ Sci & Technol Sch Informat & Elect Engn Hangzhou 310023 Zhejiang Peoples R China
Owing to the ever-growing popularity of mobile computing, a large number of services have been developed for a variety of users. Considering this, recommending useful services to users is an urgent problem that needs ... 详细信息
来源: 评论
Edge data based trailer inception probabilistic matrix factorization for context-aware movie recommendation
收藏 引用
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 2022年 第5期25卷 1863-1882页
作者: Chen, Honglong Li, Zhe Wang, Zhu Ni, Zhichen Li, Junjian Xu, Ge Aziz, Abdul Xia, Feng China Univ Petr Coll Control Sci & Engn Qingdao 266580 Peoples R China Minjiang Univ Coll Comp & Control Engn Fuzhou 350108 Peoples R China Dalian Univ Technol Sch Software Dalian 116620 Peoples R China Federat Univ Australia Sch Engn IT & Phys Sci Ballarat Vic 3353 Australia
The rapid growth of edge data generated by mobile devices and applications deployed at the edge of the network has exacerbated the problem of information overload. As an effective way to alleviate information overload... 详细信息
来源: 评论
Graph Regularized probabilistic matrix factorization for Drug-Drug Interactions Prediction
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2023年 第5期27卷 2565-2574页
作者: Jain, Stuti Chouzenoux, Emilie Kumar, Kriti Majumdar, Angshul Univ Paris Saclay CVN Inria Saclay F-91190 Gif Sur Yvette France IIIT Delhi Dept ECE Delhi 110020 India
Co-administration of two or more drugs simultaneously can result in adverse drug reactions. Identifying drug-drug interactions (DDIs) is necessary, especially for drug development and for repurposing old drugs. DDI pr... 详细信息
来源: 评论
Collaborative recommendation algorithm based on probabilistic matrix factorization in probabilistic latent semantic analysis
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第7期78卷 8711-8722页
作者: Huang, Li Tan, Wenan Sun, Yong Nanjing Univ Aero & Astr Sch Comp Sci & Technol Nanjing 210016 Jiangsu Peoples R China Jiangsu Open Univ Sch Informat & Electromech Engn Nanjing 210017 Jiangsu Peoples R China Shanghai Second Polytech Univ Shanghai Sch Comp & Informat Engn Shanghai 210209 Peoples R China Chuzhou Univ Coll Geog Informat & Tourism Chuzhou 239000 Anhui Peoples R China
In order to effectively solve the problem of new items and obviously improve the accuracy of the recommended results, we proposed a collaborative recommendation algorithm based on improved probabilistic latent semanti... 详细信息
来源: 评论
Deep probabilistic matrix factorization Framework for Online Collaborative Filtering
收藏 引用
IEEE ACCESS 2019年 7卷 56117-56128页
作者: Li, Kangkang Zhou, Xiuze Lin, Fan Zeng, Wenhua Alterovitz, Gil Xiamen Univ Software Sch Xiamen 361005 Fujian Peoples R China Xiamen Univ Dept Automat Xiamen 361005 Fujian Peoples R China Harvard Med Sch Computat Hlth Informat Program Boston MA 02138 USA
As living data growing and evolving rapidly, traditional machine learning algorithms are hard to update models when dealing with new training data. When new data arrives, traditional collaborative filtering methods ha... 详细信息
来源: 评论
Pairwise probabilistic matrix factorization for implicit feedback collaborative filtering
收藏 引用
NEUROCOMPUTING 2016年 204卷 17-25页
作者: Li, Gai Ou, Weihua Shunde Polytech Dept Elect & Informat Engn Foshan 528300 Peoples R China Guizhou Normal Univ Sch Math & Comp Sci Guiyang 550001 Peoples R China
Implicit feedback collaborative filtering has attracted a lot of attention in collaborative filtering, which is called one-class collaborative filtering (OCCF). However, the low recommendation accuracy and the high co... 详细信息
来源: 评论
A hybrid recommendation approach using LDA and probabilistic matrix factorization
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2019年 第4-Sup期22卷 S8811-S8821页
作者: Cao, Yulin Li, Wenli Zheng, Dongxia Dalian Univ Technol Fac Econ & Management Dalian Liaoning Peoples R China Dalian Polytech Univ Sch Management Dalian Liaoning Peoples R China Dalian Neusoft Informat Univ Dept Software Engn Dalian Liaoning Peoples R China
Recommender systems provide users with suggestions and selections. Hybrid approaches which combine the neighborhood-based methods and the model-based methods have become popular when building collaborative filtering r... 详细信息
来源: 评论
A POI recommendation approach integrating social spatio-temporal information into probabilistic matrix factorization
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2021年 第1期63卷 65-85页
作者: Davtalab, Mehri Alesheikh, Ali Asghar KN Toosi Univ Technol Dept Geospatial Informat Syst Fac Geodesy & Geomat Engn Valiasr St Tehran *** Iran
In recent years, point of interest (POI) recommendation has gained increasing attention all over the world. POI recommendation plays an indispensable role in assisting people to find places they are likely to enjoy. T... 详细信息
来源: 评论