咨询与建议

限定检索结果

文献类型

  • 199 篇 会议
  • 150 篇 期刊文献
  • 5 篇 学位论文

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 336 篇 工学
    • 268 篇 计算机科学与技术...
    • 222 篇 电气工程
    • 56 篇 软件工程
    • 33 篇 信息与通信工程
    • 21 篇 控制科学与工程
    • 16 篇 机械工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 3 篇 仪器科学与技术
    • 3 篇 网络空间安全
    • 2 篇 动力工程及工程热...
    • 2 篇 生物医学工程(可授...
    • 2 篇 生物工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
  • 18 篇 理学
    • 11 篇 物理学
    • 7 篇 化学
    • 3 篇 生物学
    • 2 篇 数学
  • 14 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 农学

主题

  • 354 篇 processing-in-me...
  • 35 篇 dram
  • 29 篇 random access me...
  • 27 篇 computer archite...
  • 21 篇 reram
  • 20 篇 near-data proces...
  • 20 篇 machine learning
  • 18 篇 in-memory comput...
  • 17 篇 accelerator
  • 17 篇 memristor
  • 14 篇 deep learning
  • 14 篇 bandwidth
  • 14 篇 convolutional ne...
  • 12 篇 parallel process...
  • 12 篇 neural networks
  • 12 篇 hardware
  • 11 篇 pim
  • 10 篇 memory systems
  • 10 篇 non-volatile mem...
  • 9 篇 benchmarking

机构

  • 13 篇 swiss fed inst t...
  • 7 篇 univ chinese aca...
  • 6 篇 georgia inst tec...
  • 5 篇 new jersey inst ...
  • 5 篇 carnegie mellon ...
  • 5 篇 chinese acad sci...
  • 4 篇 penn state univ ...
  • 4 篇 duke univ durham...
  • 4 篇 sungkyunkwan uni...
  • 4 篇 upmem grenoble
  • 4 篇 george mason uni...
  • 4 篇 tsinghua univ pe...
  • 3 篇 natl yang ming c...
  • 3 篇 univ southern ca...
  • 3 篇 shandong univ pe...
  • 3 篇 technion israel ...
  • 3 篇 duke univ dept e...
  • 3 篇 georgia inst tec...
  • 3 篇 shanghai jiao to...
  • 3 篇 arizona state un...

作者

  • 20 篇 mutlu onur
  • 10 篇 chen yiran
  • 10 篇 gomez-luna juan
  • 9 篇 angizi shaahin
  • 8 篇 oliveira geraldo...
  • 8 篇 alves marco a. z...
  • 8 篇 carro luigi
  • 8 篇 jin hai
  • 7 篇 zheng long
  • 7 篇 kvatinsky shahar
  • 7 篇 liao xiaofei
  • 7 篇 han yinhe
  • 7 篇 chen xiaoming
  • 6 篇 huang yu
  • 6 篇 fan deliang
  • 6 篇 shen zhaoyan
  • 6 篇 ghose saugata
  • 6 篇 ronen ronny
  • 5 篇 narayanan vijayk...
  • 5 篇 kim hyesoon

语言

  • 352 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=processing-in-memory"
354 条 记 录,以下是91-100 订阅
排序:
Data-Centric Computing Frontiers: A Survey On processing-in-memory  16
Data-Centric Computing Frontiers: A Survey On Processing-In-...
收藏 引用
International Symposium on memory Systems (MEMSYS)
作者: Siegl, Patrick Buchty, Rainer Berekovic, Mladen Tech Univ Carolo Wilhelmina Braunschweig Abt Tech Informat EIS Muhlenpfordtstr 23 D-38106 Braunschweig Germany
A major shift from compute-centric to data-centric computing systems can be perceived, as novel big data workloads like cognitive computing and machine learning strongly enforce embarrassingly parallel and highly effi... 详细信息
来源: 评论
Accelerating Neural Network Training with processing-in-memory GPU  22
Accelerating Neural Network Training with Processing-in-Memo...
收藏 引用
22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
作者: Fei, Xiang Han, Jianhui Huang, Jianqiang Zheng, Weimin Zhang, Youhui Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Comp Sci & Technol Beijing Peoples R China Tsinghua Univ Sch Integrated Circuits Beijing Peoples R China Qinghai Univ Dept Comp Technol & Applicat Xining Peoples R China
processing-in-memory (PIM) architecture is promising for accelerating deep neural network (DNN) training due to its low-latency and energy-efficient data movement between computation units and the memory. This paper e... 详细信息
来源: 评论
PIM-STM: Software Transactional memory for processing-in-memory Systems  24
PIM-STM: Software Transactional Memory for Processing-In-Mem...
收藏 引用
29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
作者: Lopes, Andre Castro, Daniel Romano, Paolo Univ Lisbon INESC ID Lisbon Portugal Univ Lisbon Inst Super Tecn Lisbon Portugal
processing-in-memory (PIM) is a novel approach that augments existing DRAM memory chips with lightweight logic. By allowing to offload computations to the PIM system, this architecture allows for circumventing the dat... 详细信息
来源: 评论
An 8-T processing-in-memory SRAM Cell-Based Pixel-Parallel Array Processor for Vision Chips
An 8-T Processing-in-Memory SRAM Cell-Based Pixel-Parallel A...
收藏 引用
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
作者: Chen, Leyi He, Junxian Yu, Jianyi Wang, Haibing Lu, Jing Liu, Liyuan Wu, Nanjian Shi, Cong Min, Tian Chongqing Univ Sch Microelect & Commun Engn Chongqing 400044 Peoples R China Chinese Acad Sci Inst Semiconductors Beijing 100083 Peoples R China
Vision chip is a high-speed image processing device, featuring a massively-parallel pixel-level processing element (PE) array to boost pixel processing speed. However, the collocated processing unit and fine-grained d... 详细信息
来源: 评论
A Customized processing-in-memory Architecture for Biological Sequence Alignment  29
A Customized Processing-in-Memory Architecture for Biologica...
收藏 引用
29th Annual IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP)
作者: Akbari, Nasrin Modarressi, Mehdi Daneshtalab, Masoud Loni, Mohammad Univ Tehran Coll Engn Dept Elect & Comp Engn Tehran Iran Inst Res Fundamental Sci IPM Sch Comp Sci Tehran Iran Malardalen Univ MDH Vasteras Sweden Royal Inst Technol KTH Stockholm Sweden
Sequence alignment is the most widely used operation in bioinformatics. With the exponential growth of the biological sequence databases, searching a database to find the optimal alignment for a query sequence (that c... 详细信息
来源: 评论
PSB-RNN: A processing-in-memory Systolic Array Architecture using Block Circulant Matrices for Recurrent Neural Networks
PSB-RNN: A Processing-in-Memory Systolic Array Architecture ...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition (DATE)
作者: Challapalle, Nagadastagiri Rampalli, Sahithi Chandran, Makesh Kalsi, Gurpreet Subramoney, Sreenivas Sampson, John Narayanan, Vijaykrishnan Penn State Univ University Pk PA 16802 USA Intel Labs Processor Architecture Res Lab Bangalore Karnataka India
Recurrent Neural Networks (RNNs) are widely used in Natural Language processing (NLP) applications as they inherently capture contextual information across spatial and temporal dimensions. Compared to other classes of... 详细信息
来源: 评论
TransPimLib: Efficient Transcendental Functions for processing-in-memory Systems
TransPimLib: Efficient Transcendental Functions for Processi...
收藏 引用
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
作者: Item, Maurus Gomez-Luna, Juan Guo, Yuxin Oliveira, Geraldo F. Sadrosadati, Mohammad Mutlu, Onur Swiss Fed Inst Technol Zurich Switzerland
processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is more constrained... 详细信息
来源: 评论
AESPA: Asynchronous Execution Scheme to Exploit Bank-Level Parallelism of processing-in-memory  23
AESPA: Asynchronous Execution Scheme to Exploit Bank-Level P...
收藏 引用
56th IEEE/ACM International Symposium on Microarchitecture (MICRO)
作者: Kal, Hongju Yoo, Chanyoung Ro, Won Woo Yonsei Univ Seoul South Korea
This paper presents an asynchronous execution scheme to leverage the bank-level parallelism of near-bank processing-in-memory (PIM). We observe that performing memory operations underutilizes the parallelism of PIM co... 详细信息
来源: 评论
Massively Parallel Skyline Computation For processing-in-memory Architectures  18
Massively Parallel Skyline Computation For Processing-In-Mem...
收藏 引用
27th IEEE/ACM/IFIP International Conference on Parallel Architectures and Compilation Techniques (PACT)
作者: Zois, Vasileios Gupta, Divya Tsotras, Vassilis J. Najjar, Walid A. Roy, Jean-Francois Univ Calif Riverside Riverside CA 92521 USA UPMEM SAS Grenoble France
processing-in-memory (PIM) is an increasingly popular architecture aimed at addressing the 'memory wall' crisis by prioritizing the integration of processors within DRAM. It promotes low data access latency, h... 详细信息
来源: 评论
Runtime Row/Column Activation Pruning for ReRAM-based processing-in-memory DNN Accelerators  42
Runtime Row/Column Activation Pruning for ReRAM-based Proces...
收藏 引用
42nd IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
作者: Jiang, Xikun Shen, Zhaoyan Sun, Siqing Yin, Ping Jia, Zhiping Ju, Lei Zhang, Zhiyong Yu, Dongxiao Shandong Univ Sch Comp Sci & Technol Qingdao Peoples R China Cloud Inspur Informat Technol Co Ltd Qingdao Peoples R China Shandong Univ Sch Cyber Sci & Technol Qingdao Peoples R China
Resistive random access memory (ReRAM)-based processing-in-memory (PIM) DNN accelerators have shown great potential in improving model efficiency and saving energy. To further improve memory and computation efficiency... 详细信息
来源: 评论