咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 11 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 35 篇 计算机科学与技术...
  • 33 篇 理学
    • 33 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 44 篇 propositional pr...
  • 11 篇 resolution
  • 8 篇 lower bounds
  • 4 篇 polynomial calcu...
  • 3 篇 complexity gap t...
  • 3 篇 theory
  • 3 篇 lift-and-project...
  • 3 篇 res(k)
  • 2 篇 computational co...
  • 2 篇 modular counting
  • 2 篇 k-dnfs
  • 2 篇 rank lower bound...
  • 2 篇 lovasz-schrijver...
  • 2 篇 optimal algorith...
  • 2 篇 pigeonhole princ...
  • 2 篇 bounded arithmet...
  • 2 篇 integer programm...
  • 2 篇 random cnfs
  • 2 篇 constant-depth f...
  • 2 篇 modal logic

机构

  • 6 篇 univ durham dept...
  • 4 篇 inst adv study s...
  • 3 篇 univ toronto dep...
  • 2 篇 inst adv study p...
  • 2 篇 technion israel ...
  • 2 篇 acad sci czech r...
  • 2 篇 natl inst inform...
  • 2 篇 univ oxford inst...
  • 2 篇 va steklov math ...
  • 2 篇 univ washington ...
  • 1 篇 univ durham dept...
  • 1 篇 univ toronto on
  • 1 篇 charles univ pra...
  • 1 篇 univ politecn ca...
  • 1 篇 portland state u...
  • 1 篇 hebrew univ jeru...
  • 1 篇 steklov inst mat...
  • 1 篇 univ politecn ca...
  • 1 篇 charles univ pra...
  • 1 篇 va steklov math ...

作者

  • 7 篇 dantchev stefan
  • 5 篇 martin barnaby
  • 4 篇 rhodes mark
  • 3 篇 hirsch edward a.
  • 2 篇 alekhnovich m
  • 2 篇 itsykson dmitry
  • 2 篇 tzameret iddo
  • 2 篇 kojevnikov arist
  • 2 篇 segerlind n
  • 2 篇 ben-sasson eli
  • 2 篇 segerlind nathan
  • 2 篇 jerabek emil
  • 2 篇 pitassi toniann
  • 2 篇 impagliazzo russ...
  • 1 篇 buss samuel r.
  • 1 篇 pitassi t
  • 1 篇 raz r
  • 1 篇 bonet ml
  • 1 篇 vaikuntanathan v...
  • 1 篇 alekhnovich mich...

语言

  • 44 篇 英文
检索条件"主题词=propositional proof complexity"
44 条 记 录,以下是1-10 订阅
排序:
Pseudorandom generators in propositional proof complexity
收藏 引用
SIAM JOURNAL ON COMPUTING 2004年 第1期34卷 67-88页
作者: Alekhnovich, M Ben-Sasson, E Razborov, AA Wigderson, A Moscow MV Lomonosov State Univ Moscow Russia Hebrew Univ Jerusalem Inst Comp Sci Jerusalem Israel VA Steklov Math Inst Moscow 117333 Russia Inst Adv Study Princeton NJ 08540 USA
We call a pseudorandom generator G(n) : {0, 1}(n) --> {0, 1}(m) hard for a propositional proof system P if P cannot efficiently prove the (properly encoded) statement G(n)(x(1),..., x(n)) not equal b for any string... 详细信息
来源: 评论
Lower bounds for Lovasz-Schrijver systems and beyond follow from multiparty communication complexity
收藏 引用
SIAM JOURNAL ON COMPUTING 2007年 第3期37卷 845-869页
作者: Beame, Paul Pitassi, Toniann Segerlind, Nathan Univ Washington Seattle WA 98195 USA Univ Toronto Dept Comp Sci Toronto ON M5S 1A4 Canada Portland State Univ Dept Comp Sci Portland OR 97207 USA
We prove that an omega (log(4) n) lower bound for the three- party number- on- the- forehead ( NOF) communication complexity of the set- disjointness function implies an n.( 1) size lower bound for treelike Lovasz - S... 详细信息
来源: 评论
proof complexity AND THE BINARY ENCODING OF COMBINATORIAL PRINCIPLES
收藏 引用
SIAM JOURNAL ON COMPUTING 2024年 第3期53卷 764-802页
作者: Dantchev, Stefan Galesi, Nicola Ghani, Abdul Martin, Barnaby Univ Durham Dept Comp Sci Durham England Sapienza Univ Roma Dipartimento Ingn Informat Automat & Gest A Rubert Rome Italy
We consider proof complexity in light of the unusual binary encoding of certain combinatorial principles. We contrast this proof complexity with the normal unary encoding in several refutation systems, based on Resolu... 详细信息
来源: 评论
On Optimal Heuristic Randomized Semidecision Procedures, with Applications to proof complexity and Cryptography
收藏 引用
THEORY OF COMPUTING SYSTEMS 2012年 第2期51卷 179-195页
作者: Hirsch, Edward A. Itsykson, Dmitry Monakhov, Ivan Smal, Alexander VA Steklov Math Inst St Petersburg 191011 Russia
The existence of an optimal propositional proof system is a major open question in proof complexity;many people conjecture that such systems do not exist. Krajiek and Pudlak (J. Symbol. Logic 54(3):1063, 1989) show th... 详细信息
来源: 评论
Parameterized proof complexity
收藏 引用
COMPUTATIONAL complexity 2011年 第1期20卷 51-85页
作者: Dantchev, Stefan Martin, Barnaby Szeider, Stefan Univ Durham Dept Comp Sci Durham DH1 3LE England
We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied ... 详细信息
来源: 评论
A complexity gap for tree resolution
收藏 引用
COMPUTATIONAL complexity 2001年 第3期10卷 179-209页
作者: Riis, S Univ London Dept Comp Sci London E1 4NS England
This paper shows that any sequence psi(n) of tautologies which expresses the validity of a fixed combinatorial principle either is "easy", i.e. has polynomial size tree-resolution proofs, or is "difficu... 详细信息
来源: 评论
Rank complexity gap for Lovasz-Schrijver and Sherali-Adams proof systems
收藏 引用
COMPUTATIONAL complexity 2013年 第1期22卷 191-213页
作者: Dantchev, Stefan Martin, Barnaby Univ Durham Sch Engn & Comp Sci Durham DH1 3LE England
We prove a dichotomy theorem for the rank of propositional contradictions, uniformly generated from first-order sentences, in both the Lovasz-Schrijver (LS) and Sherali-Adams (SA) refutation systems. More precisely, w... 详细信息
来源: 评论
ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES, WITH APPLICATION TO proof complexity
ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES, WIT...
收藏 引用
27th International Symposium on Theoretical Aspects of Computer Science (STACS)
作者: Hirsch, Edward A. Itsykson, Dmitry Steklov Inst Math St Petersburg 27 Fontanka St Petersburg 191023 Russia
The existence of a (p-) optimal propositional proof system is a major open question in (proof) complexity;many people conjecture that such systems do not exist. Krajicek and Pudlak [KP89] show that this question is eq... 详细信息
来源: 评论
On the complexity of the Sperner Lemma
On the complexity of the Sperner Lemma
收藏 引用
2nd Conference on Computability in Europe (CiE 2006)
作者: Dantchev, Stefan Univ Durham Dept Comp Sci Sci Labs Durham DH1 3LE England
We present a reduction from the Pigeon-Hole Principle to the classical Sperner Lemma. The reduction is used 1. to show that the Sperner Lemma does not have a short constant-depth Frege proof, and 2. to prove lower bou... 详细信息
来源: 评论
Rank complexity Gap for Lovasz-Schrijver and Sherali-Adams proof Systems  07
Rank Complexity Gap for Lovasz-Schrijver and Sherali-Adams P...
收藏 引用
39th Annual ACM Symposium on Theory of Computing
作者: Dantchev, Stefan Univ Durham Dept Comp Sci Durham DH1 3LE England
We prove a dichotomy theorem for the rank of the uniformly generated (i.e. expressible in First-Order (170) Logic) propositional tautologies in both the Lovdsz-Schrijver (LS) and Sherali-Adams (SA) proof systems. More... 详细信息
来源: 评论