咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 控制科学与工程

主题

  • 2 篇 diffusion distan...
  • 2 篇 reinforcement le...
  • 2 篇 proto value func...
  • 2 篇 least-squares po...
  • 2 篇 visual robot nav...
  • 2 篇 slow feature ana...

机构

  • 1 篇 neural informati...
  • 1 篇 tech univ berlin...
  • 1 篇 robotics group t...
  • 1 篇 mpi for intellig...
  • 1 篇 ucl ctr computat...
  • 1 篇 google
  • 1 篇 tech univ berlin...
  • 1 篇 centre for compu...

作者

  • 1 篇 bernhard schölko...
  • 1 篇 obermayer klaus
  • 1 篇 musial marek
  • 1 篇 marek musial
  • 1 篇 wendelin böhmer
  • 1 篇 gruenewaelder st...
  • 1 篇 boehmer wendelin
  • 1 篇 kevin murphy
  • 1 篇 steffen grünewäl...
  • 1 篇 yun shen
  • 1 篇 shen yun
  • 1 篇 klaus obermayer

语言

  • 2 篇 英文
检索条件"主题词=proto value functions"
2 条 记 录,以下是1-10 订阅
排序:
Construction of Approximation Spaces for Reinforcement Learning
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2013年 第7期14卷 2067-2118页
作者: Boehmer, Wendelin Gruenewaelder, Steffen Shen, Yun Musial, Marek Obermayer, Klaus Tech Univ Berlin Neural Informat Proc Grp D-10587 Berlin Germany UCL Ctr Computat Stat & Machine Learning London WC1E 6BT England Tech Univ Berlin Robot Grp D-10587 Berlin Germany
Linear reinforcement learning (RL) algorithms like least-squares temporal difference learning (LSTD) require basis functions that span approximation spaces of potential value functions. This article investigates metho... 详细信息
来源: 评论
Construction of approximation spaces for reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2013年 第1期14卷
作者: Kevin Murphy Bernhard Schölkopf Wendelin Böhmer Steffen Grünewälder Yun Shen Marek Musial Klaus Obermayer Google MPI for Intelligent Systems Neural Information Processing Group Technische Universität Berlin Berlin Germany Centre for Computational Statistics and Machine Learning University College London London United Kingdom Robotics Group Technische Universität Berlin Berlin Germany
Linear reinforcement learning (RL) algorithms like least-squares temporal difference learning (LSTD) require basis functions that span approximation spaces of potential value functions. This article investigates metho... 详细信息
来源: 评论