咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 23 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 40 篇 电气工程
    • 33 篇 计算机科学与技术...
    • 15 篇 信息与通信工程
    • 15 篇 软件工程
    • 11 篇 控制科学与工程
    • 2 篇 测绘科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 74 篇 理学
    • 61 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 25 篇 管理学
    • 25 篇 管理科学与工程(可...
  • 9 篇 医学
    • 7 篇 临床医学
    • 3 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 2 篇 农学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 124 篇 proximal algorit...
  • 9 篇 convex optimizat...
  • 7 篇 optimization
  • 6 篇 distributed opti...
  • 6 篇 convergence
  • 6 篇 sparsity
  • 5 篇 nonconvex regula...
  • 4 篇 splitting algori...
  • 4 篇 denoising
  • 4 篇 nonconvex optimi...
  • 3 篇 sparse regulariz...
  • 3 篇 nonsmooth optimi...
  • 3 篇 convex minimizat...
  • 3 篇 image restoratio...
  • 3 篇 stochastic appro...
  • 3 篇 couplings
  • 3 篇 constrained opti...
  • 3 篇 matrix completio...
  • 3 篇 minimization
  • 3 篇 regularization

机构

  • 5 篇 north carolina s...
  • 2 篇 univ montpellier...
  • 2 篇 observ paris cnr...
  • 2 篇 politecn milan d...
  • 2 篇 inria f-38334 sa...
  • 2 篇 department of co...
  • 2 篇 shanghaitech uni...
  • 2 篇 hong kong univ s...
  • 2 篇 univ grenoble al...
  • 2 篇 tsinghua univ de...
  • 2 篇 hong kong baptis...
  • 1 篇 univ paris sacla...
  • 1 篇 school of comput...
  • 1 篇 dalian univ tech...
  • 1 篇 univ mohammed 5 ...
  • 1 篇 beijing univ che...
  • 1 篇 upmc universite ...
  • 1 篇 department of co...
  • 1 篇 cncpst f-75252 p...
  • 1 篇 univ zanjan dept...

作者

  • 9 篇 combettes patric...
  • 6 篇 pesquet jean-chr...
  • 3 篇 kwok james t.
  • 3 篇 chouzenoux emili...
  • 3 篇 yao quanming
  • 2 篇 pesquet j. -c.
  • 2 篇 lemaréchal c
  • 2 篇 bertsekas dimitr...
  • 2 篇 cong fengyu
  • 2 篇 prandini maria
  • 2 篇 pustelnik n.
  • 2 篇 jin danqi
  • 2 篇 lu jie
  • 2 篇 falsone alessand...
  • 2 篇 wu xuyang
  • 2 篇 chaux caroline
  • 2 篇 malick jerome
  • 2 篇 bougeard ml
  • 2 篇 corbineau marie-...
  • 2 篇 cabot a.

语言

  • 119 篇 英文
  • 5 篇 其他
检索条件"主题词=proximal algorithm"
124 条 记 录,以下是31-40 订阅
排序:
Asymptotic convergence of an inertial proximal method for unconstrained quasiconvex minimization
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2009年 第4期45卷 631-644页
作者: Mainge, Paul-Emile Département Scientifique Interfacultaire GRIMAAG Université des Antilles et de la Guyane Campus de Schoelcher 97230 Cedex Martinique (F.W.I.) France
This paper deals with the convergence analysis of a second order proximal method for approaching critical points of a smooth and quasiconvex objective function defined on a real Hilbert space. The considered method, w... 详细信息
来源: 评论
Splitting of Composite Neural Networks via proximal Operator With Information Bottleneck
收藏 引用
IEEE ACCESS 2024年 12卷 157-167页
作者: Han, Sang-Il Nakamura, Kensuke Hong, Byung-Woo Chung Ang Univ Dept Artificial Intelligence Seoul 06974 South Korea
Deep learning has achieved efficient success in the field of machine learning, made possible by the emergence of efficient optimization methods such as Stochastic Gradient Descent (SGD) and its variants. Simultaneousl... 详细信息
来源: 评论
On a primal-proximal heuristic in discrete optimization
收藏 引用
MATHEMATICAL PROGRAMMING 2005年 第1期104卷 105-128页
作者: Daniilidis, A Lemaréchal, C INRIA F-38334 Saint Ismier France
Lagrangian relaxation is useful to bound the optimal value of a given optimization problem, and also to obtain relaxed solutions. To obtain primal solutions, it is conceivable to use a convexification procedure sugges... 详细信息
来源: 评论
Automated Regularization Parameter Selection Using Continuation Based proximal Method for Compressed Sensing MRI
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020年 6卷 1309-1319页
作者: Mathew, Raji Susan Paul, Joseph Suresh Indian Inst Informat Technol Med Image Comp & Signal Proc Lab Trivandrum 695581 Kerala India
For compressed sensing magnetic resonance imaging (CS-MRI) that utilize sparse representations, the regularization parameter establishes a trade-off between sparsity and data fidelity. While convergence to the desired... 详细信息
来源: 评论
Accelerated proximal Subsampled Newton Method
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第10期32卷 4374-4388页
作者: Ye, Haishan Luo, Luo Zhang, Zhihua Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen 518172 Peoples R China Hong Kong Univ Sci & Technol Dept Math Hong Kong Peoples R China Peking Univ Dept Math Beijing 100871 Peoples R China
Composite function optimization problem often arises in machine learning known as regularized empirical minimization. We introduce the acceleration technique to the Newton-type proximal method and propose a novel algo... 详细信息
来源: 评论
Stochastic proximal subgradient descent oscillates in the vicinity of its accumulation set
收藏 引用
OPTIMIZATION LETTERS 2023年 第1期17卷 177-190页
作者: Schechtman, S. Univ Gustave Eiffel ESIEE Paris LIGM F-77454 Marne La Vallee France
We analyze the stochastic proximal subgradient descent in the case where the objective functions are path differentiable and verify a Sard-type condition. While the accumulation set may not be reduced to unique point,... 详细信息
来源: 评论
An Off-Grid DOA Estimation Method Using proximal Splitting and Successive Nonconvex Sparsity Approximation
收藏 引用
IEEE ACCESS 2019年 7卷 66764-66773页
作者: Zhang, Xiaowei Jiang, Tao Li, Yingsong Liu, Xiaoguang Harbin Engn Univ Coll Informat & Commun Engn Harbin 150001 Heilongjiang Peoples R China Chinese Acad Sci Natl Space Sci Ctr Key Lab Microwave Remote Sensing Beijing 100190 Peoples R China Univ Calif Davis Elect & Comp Engn Dept Davis CA 95616 USA
Direction-of-arrival (DOA) estimation is a fundamental problem in many signal processing. Recently, a variety of sparsity-aware methods have been proposed for DOA estimation. The discrimination of grid in these method... 详细信息
来源: 评论
DUALITY RESULTS AND proximal SOLUTIONS OF THE HUBER M-ESTIMATOR PROBLEM
收藏 引用
APPLIED MATHEMATICS AND OPTIMIZATION 1994年 第2期30卷 203-221页
作者: MICHELOT, C BOUGEARD, ML UNIV BOURGOGNE F-21004 DIJONFRANCE OBSERV PARIS CNRSURA 1125F-75014 PARISFRANCE
We investigate the interest of solving the Huber M-estimator problem by a proximal approach combined with duality theory. Three different duality schemes are developed. The first one which only deals with estimator de... 详细信息
来源: 评论
A primal-proximal heuristic applied to the French Unit-commitment problem
收藏 引用
MATHEMATICAL PROGRAMMING 2005年 第1期104卷 129-151页
作者: Dubost, L Gonzalez, R Lemaréchal, C EDF R&D F-92141 Clamart France EDF F-78005 Versailles France INRIA F-38334 Saint Ismier France
This paper is devoted to the numerical resolution of unit-commitment problems, with emphasis on the French model optimizing the daily production of electricity. The solution process has two phases. First a Lagrangian ... 详细信息
来源: 评论
Online proximal Learning Over Jointly Sparse Multitask Networks With l∞,1 Regularization
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 6319-6335页
作者: Jin, Danqi Chen, Jie Richard, Cedric Chen, Jingdong Northwestern Polytech Univ Ctr Intelligent Acoust & Immers Commun Sch Marine Sci & Technol Xian 710072 Peoples R China Minist Ind & Informat Technol Key Lab Ocean Acoust & Sensing Xian 710072 Peoples R China Univ Cote Azur CNRS F-06100 Nice France
Modeling relations between local optimum parameter vectors to estimate in multitask networks has attracted much attention over the last years. This work considers a distributed optimization problem with jointly sparse... 详细信息
来源: 评论