咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 控制科学与工程

主题

  • 2 篇 low-rank tensor
  • 2 篇 proximal average...
  • 2 篇 proximal algorit...
  • 2 篇 overlapped nucle...
  • 1 篇 nonconvex regula...
  • 1 篇 nonconvex regu-l...

机构

  • 1 篇 department of co...
  • 1 篇 baidu research b...
  • 1 篇 department of co...
  • 1 篇 department of el...
  • 1 篇 hong kong univ s...
  • 1 篇 baidu inc baidu ...
  • 1 篇 tsinghua univ de...
  • 1 篇 hong kong baptis...

作者

  • 1 篇 wang yaqing
  • 1 篇 yaqing wang
  • 1 篇 han bo
  • 1 篇 kwok james t.
  • 1 篇 james t. kwok
  • 1 篇 yao quanming
  • 1 篇 quanming yao
  • 1 篇 bo han

语言

  • 2 篇 英文
检索条件"主题词=proximal average algorithm"
2 条 记 录,以下是1-10 订阅
排序:
Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm Regularization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-60页
作者: Yao, Quanming Wang, Yaqing Han, Bo Kwok, James T. Tsinghua Univ Dept Elect Engn Beijing Peoples R China Baidu Inc Baidu Res Beijing Peoples R China Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
Nonconvex regularization has been popularly used in low-rank matrix learning. However, extending it for low-rank tensor learning is still computationally expensive. To address this problem, we develop an efficient sol... 详细信息
来源: 评论
Low-rank tensor learning with nonconvex overlapped nuclear norm regularization
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 6083-6142页
作者: Quanming Yao Yaqing Wang Bo Han James T. Kwok Department of Electronic Engineering Tsinghua University Baidu Research Baidu Inc. Department of Computer Science Hong Kong Baptist University Department of Computer Science and Engineering Hong Kong University of Science and Technology
Nonconvex regularization has been popularly used in low-rank matrix learning. However, extending it for low-rank tensor learning is still computationally expensive. To address this problem, we develop an efficient sol... 详细信息
来源: 评论