咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 proximal optimiz...
  • 1 篇 variational algo...
  • 1 篇 bayesian inferen...
  • 1 篇 markov chain mon...

机构

  • 1 篇 ohio state univ ...
  • 1 篇 univ paris est l...
  • 1 篇 univ toulouse in...
  • 1 篇 univ bristol sch...
  • 1 篇 heriot watt univ...
  • 1 篇 univ michigan de...

作者

  • 1 篇 mclaughlin steve
  • 1 篇 tourneret jean-y...
  • 1 篇 chouzenoux emili...
  • 1 篇 pesquet jean-chr...
  • 1 篇 hero alfred o. i...
  • 1 篇 pereyra marcelo
  • 1 篇 schniter philip

语言

  • 1 篇 英文
检索条件"主题词=proximal optimization algorithms"
1 条 记 录,以下是1-10 订阅
排序:
A Survey of Stochastic Simulation and optimization Methods in Signal Processing
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2016年 第2期10卷 224-241页
作者: Pereyra, Marcelo Schniter, Philip Chouzenoux, Emilie Pesquet, Jean-Christophe Tourneret, Jean-Yves Hero, Alfred O., III McLaughlin, Steve Univ Bristol Sch Math Bristol BS8 1TW Avon England Ohio State Univ Dept Elect & Comp Engn Columbus OH 43210 USA Univ Paris Est Lab Informat Gaspard Monge F-77454 Marne La Vallee France Univ Toulouse INP ENSEEIHT IRIT TeSA F-31071 Toulouse France Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA Heriot Watt Univ Engn & Phys Sci Edinburgh EH14 4AS Midlothian Scotland
Modern signal processing (SP) methods rely very heavily on probability and statistics to solve challenging SP problems. SP methods are now expected to deal with ever more complex models, requiring ever more sophistica... 详细信息
来源: 评论