咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 13 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 9 篇 控制科学与工程
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 软件工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 信息与通信工程
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 3 篇 理学
    • 3 篇 数学
    • 3 篇 物理学

主题

  • 24 篇 proximal policy ...
  • 15 篇 deep reinforceme...
  • 2 篇 reinforcement le...
  • 2 篇 guandan
  • 2 篇 path planning
  • 2 篇 manipulator cont...
  • 2 篇 self-learning
  • 2 篇 imperfect inform...
  • 1 篇 internet of thin...
  • 1 篇 obstacle distrib...
  • 1 篇 robotic arm moti...
  • 1 篇 online combustio...
  • 1 篇 uav altitude con...
  • 1 篇 segmented adapti...
  • 1 篇 advantage actor ...
  • 1 篇 relays
  • 1 篇 electricity mark...
  • 1 篇 bi-level optimiz...
  • 1 篇 a* algorithm
  • 1 篇 age of informati...

机构

  • 1 篇 army engn univ p...
  • 1 篇 jiangnan univ sc...
  • 1 篇 nanjing univ aer...
  • 1 篇 shanghai jiao to...
  • 1 篇 suzhou univ sci ...
  • 1 篇 changchun univ s...
  • 1 篇 shanghai baosigh...
  • 1 篇 college of elect...
  • 1 篇 shandong univ de...
  • 1 篇 school of comput...
  • 1 篇 naval equipment ...
  • 1 篇 dalian univ tech...
  • 1 篇 hunan univ finan...
  • 1 篇 wuhan univ sch i...
  • 1 篇 texas a&m univ q...
  • 1 篇 nanchang key lab...
  • 1 篇 harbin engn univ...
  • 1 篇 nanjing audit un...
  • 1 篇 jiangsu marine r...
  • 1 篇 minist nat resou...

作者

  • 1 篇 wang yanhong
  • 1 篇 jiahong pan
  • 1 篇 ding hongchang
  • 1 篇 han longzhe
  • 1 篇 hengheng shen
  • 1 篇 dong peng
  • 1 篇 li liang
  • 1 篇 shaoxiong yang
  • 1 篇 assi chadi
  • 1 篇 wang hui
  • 1 篇 chen huafeng
  • 1 篇 zhou jiantao
  • 1 篇 chen xuemei
  • 1 篇 jin xin
  • 1 篇 sun jialong
  • 1 篇 wu jie
  • 1 篇 hu rong
  • 1 篇 zhang hongnan
  • 1 篇 pan jiahong
  • 1 篇 zhao bo

语言

  • 20 篇 英文
  • 3 篇 其他
检索条件"主题词=proximal policy optimization algorithm"
24 条 记 录,以下是21-30 订阅
排序:
optimization of three-dimensional urban underground logistics system alignment: a deep reinforcement learning approach
收藏 引用
COMPUTERS & INDUSTRIAL ENGINEERING 2025年 205卷
作者: Hou, Longlong Xu, Yuanxian Ren, Rui Yang, Jianping Su, Lijie Beijing Univ Technol Coll Architecture & Urban Planning Beijing 100124 Peoples R China Nanjing Audit Univ Sch Engn Audit Nanjing 211815 Peoples R China Army Engn Univ PLA Coll Def Engn Nanjing 210007 Peoples R China Xuzhou Univ Technol Sch Civil Engn Xuzhou 221018 Peoples R China CRRC Yangtze Co Ltd Wuhan 430212 Peoples R China
The three-dimensional (3D) alignment design of the underground logistics system (ULS) is a key factor in determining the rationality of its underground infrastructure layout. However, existing research mostly focuses ... 详细信息
来源: 评论
SAR-PPO(Segmented Adaptive Reward): Robotic Arm Open Door Motion Control With Reinforcement Learning Based on Segmented Adaptive Reward
SAR-PPO(Segmented Adaptive Reward): Robotic Arm Open Door Mo...
收藏 引用
第43届中国控制会议
作者: Jianjun Yu Xinyue Feng Daoxiong Gong Yunai Gong the Beijing Key Laboratory of Computational Intelligence and Intelligent Systems Beijing University of Technology
Door opening, as one of the common actions in daily life, has become an important direction for robotic arm applications. Different door handles open in different ways, to enable the robotic arm to complete the corres... 详细信息
来源: 评论
EN-DIVINE: An Enhanced Generative Adversarial Imitation Learning Framework for Knowledge Graph Reasoning  14th
EN-DIVINE: An Enhanced Generative Adversarial Imitation Lear...
收藏 引用
14th International Conference on Knowledge Science, Engineering, and Management (KSEM)
作者: Wu, Yuejia Zhou, Jiantao Inner Mongolia Univ Coll Comp SciMinist EducNatl & Local Joint Engn Inner Mongolia Engn Lab Cloud Comp & Serv Softwar Inner Mongolia Key Lab Social Comp & Data ProcEn Hohhot Peoples R China
Knowledge Graphs (KGs) are often incomplete and sparse. Knowledge graph reasoning aims at completing the KG by predicting missing paths between entities. The reinforcement learning (RL) based method is one of the stat... 详细信息
来源: 评论
Application of Deep Reinforcement Learning in Guandan Game
Application of Deep Reinforcement Learning in Guandan Game
收藏 引用
第34届中国控制与决策会议
作者: Jiahong Pan Zhongtian Zhang Hengheng Shen Yi Zeng Lei Wu School of Computer Science and Technology Anhui University
In recent years,imperfect information game has become an important touchstone to test the level of artificial *** are many imperfect information game scenarios in the real-world,such as economic transactions,military ... 详细信息
来源: 评论