咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 deep neural netw...
  • 1 篇 policy feedback
  • 1 篇 reinforcement le...
  • 1 篇 constrained embe...
  • 1 篇 long short-term ...
  • 1 篇 proximal policy ...

机构

  • 1 篇 jerusalem coll e...
  • 1 篇 hubei univ arts ...
  • 1 篇 gsss inst engn &...
  • 1 篇 madanapalle inst...
  • 1 篇 univ petr & ener...

作者

  • 1 篇 gurumoorthy sasi...
  • 1 篇 parameshachari b...
  • 1 篇 babu r. logesh
  • 1 篇 hua qiaozhi
  • 1 篇 nelson s. christ...

语言

  • 1 篇 英文
检索条件"主题词=proximal policy optimization technique"
1 条 记 录,以下是1-10 订阅
排序:
End-to-End Deep policy Feedback-Based Reinforcement Learning Method for Quantization in DNNs
收藏 引用
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS 2022年 第13期31卷
作者: Babu, R. Logesh Gurumoorthy, Sasikumar Parameshachari, B. D. Nelson, S. Christalin Hua, Qiaozhi Madanapalle Inst Technol & Sci Dept Comp Sci & Engn Chittoor 517325 Andhra Pradesh India Jerusalem Coll Engn Dept Comp Sci & Engn Chennai 600100 Tamil Nadu India GSSS Inst Engn & Technol Women Dept Telecommun Engn Mysuru 570011 Karnataka India Univ Petr & Energy Studies UPES Sch Comp Sci Dept Syst Cluster Dehra Dun 248007 Uttarakhand India Hubei Univ Arts & Sci Sch Comp Xiangyang 441000 Hubei Peoples R China
In the resource-constrained embedded systems, the designing of efficient deep neural networks is a challenging process, due to diversity in the artificial intelligence applications. The quantization in deep neural net... 详细信息
来源: 评论