咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 learning systems
  • 1 篇 quantity constra...
  • 1 篇 support vector m...
  • 1 篇 pruning method
  • 1 篇 sparse least squ...
  • 1 篇 sparse matrices
  • 1 篇 iterative method...
  • 1 篇 optimization
  • 1 篇 noniterative alg...
  • 1 篇 globally represe...
  • 1 篇 kernel
  • 1 篇 training

机构

  • 1 篇 qufu normal univ...
  • 1 篇 yancheng teacher...
  • 1 篇 hong kong univ s...

作者

  • 1 篇 ma yuefeng
  • 1 篇 sheng gang
  • 1 篇 liang xun
  • 1 篇 wang maoli
  • 1 篇 kwok james t.
  • 1 篇 li guangshun

语言

  • 1 篇 英文
检索条件"主题词=quantity constraint"
1 条 记 录,以下是1-10 订阅
排序:
Noniterative Sparse LS-SVM Based on Globally Representative Point Selection
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021年 第2期32卷 788-798页
作者: Ma, Yuefeng Liang, Xun Sheng, Gang Kwok, James T. Wang, Maoli Li, Guangshun Qufu Normal Univ Sch Comp Jining 276826 Peoples R China Yancheng Teachers Univ Sch Informat Engn Yancheng 224007 Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
A least squares support vector machine (LS-SVM) offers performance comparable to that of SVMs for classification and regression. The main limitation of LS-SVM is that it lacks sparsity compared with SVMs, making LS-SV... 详细信息
来源: 评论