咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 power distributi...
  • 1 篇 distributed ener...
  • 1 篇 random-forest-ba...
  • 1 篇 power engineerin...
  • 1 篇 dynamic features
  • 1 篇 convolutional ne...
  • 1 篇 switch actions
  • 1 篇 phasor measureme...
  • 1 篇 distributed powe...
  • 1 篇 random forests
  • 1 篇 distribution net...
  • 1 篇 data-driven appr...
  • 1 篇 convolutional ne...
  • 1 篇 simulated microp...
  • 1 篇 multiswitch acti...
  • 1 篇 trained cnn mode...
  • 1 篇 deep-learning-ba...

机构

  • 1 篇 lawrence livermo...

作者

  • 1 篇 stewart emma m.
  • 1 篇 duan nan

语言

  • 1 篇 英文
检索条件"主题词=random-forest-based feature ranking algorithm"
1 条 记 录,以下是1-10 订阅
排序:
Deep-learning-based power distribution network switch action identification leveraging dynamic features of distributed energy resources
收藏 引用
IET GENERATION TRANSMISSION & DISTRIBUTION 2019年 第14期13卷 3139-3147页
作者: Duan, Nan Stewart, Emma M. Lawrence Livermore Natl Lab Computat Engn Div Energy Delivery & Utilizat Grp Livermore CA 94550 USA
This study proposes a data-driven approach for identifying switch actions in power distribution networks. Simulated micro-phasor measurement unit data is utilised to train a convolutional neural network (CNN) model. T... 详细信息
来源: 评论