咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 high-order t-svd...
  • 1 篇 robust high-orde...
  • 1 篇 randomized low-r...
  • 1 篇 admm algorithm
  • 1 篇 nonconvex regula...

机构

  • 1 篇 xi an jiao tong ...
  • 1 篇 ningxia univ sch...
  • 1 篇 texas a&m univ q...
  • 1 篇 southwest univ r...
  • 1 篇 southwest univ s...

作者

  • 1 篇 qin wenjin
  • 1 篇 wang jianjun
  • 1 篇 zhang feng
  • 1 篇 wang hailin
  • 1 篇 huang tingwen
  • 1 篇 ma weijun

语言

  • 1 篇 英文
检索条件"主题词=randomized low-rank tensor approximation"
1 条 记 录,以下是1-10 订阅
排序:
Nonconvex Robust High-Order tensor Completion Using randomized low-rank approximation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 2835-2850页
作者: Qin, Wenjin Wang, Hailin Zhang, Feng Ma, Weijun Wang, Jianjun Huang, Tingwen Southwest Univ Sch Math & Stat Chongqing 400715 Peoples R China Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China Ningxia Univ Sch Informat Engn Yinchuan 750021 Peoples R China Southwest Univ Sch Math & Stat Chongqing 400715 Peoples R China Southwest Univ Res Inst Intelligent Finance & Digital Econ Chongqing 400715 Peoples R China Texas A&M Univ Qatar Dept Math Doha Qatar
Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these met... 详细信息
来源: 评论