咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 计算机科学与技术...
    • 1 篇 交通运输工程
  • 3 篇 理学
    • 3 篇 数学
    • 1 篇 物理学

主题

  • 8 篇 randomized matri...
  • 3 篇 massive mimo
  • 2 篇 low-rank
  • 2 篇 channel estimati...
  • 2 篇 estimation
  • 2 篇 matrix decomposi...
  • 1 篇 low power
  • 1 篇 representation l...
  • 1 篇 csit acquisition
  • 1 篇 inverse problems
  • 1 篇 fast summation
  • 1 篇 shift skill
  • 1 篇 channel state in...
  • 1 篇 treecodes
  • 1 篇 kernel independe...
  • 1 篇 convergence
  • 1 篇 fdd massive mimo...
  • 1 篇 sparse-sign rand...
  • 1 篇 streaming algori...
  • 1 篇 local low rank m...

机构

  • 2 篇 univ texas austi...
  • 1 篇 fudan univ sch m...
  • 1 篇 johann radon ins...
  • 1 篇 beijing inst tec...
  • 1 篇 purdue univ w la...
  • 1 篇 stevens inst tec...
  • 1 篇 nanjing univ pos...
  • 1 篇 beihang univ sch...
  • 1 篇 bupt sice people...
  • 1 篇 univ texas austi...
  • 1 篇 uber inc seattle...
  • 1 篇 weierstrass inst...
  • 1 篇 tsinghua univ bn...
  • 1 篇 indiana univ sch...
  • 1 篇 fudan univ key l...
  • 1 篇 beijing univ pos...
  • 1 篇 purdue univ indi...
  • 1 篇 beijing univ pos...
  • 1 篇 indiana univ blo...

作者

  • 3 篇 li bin
  • 3 篇 zhao chenglin
  • 2 篇 liu hongfu
  • 2 篇 march william b.
  • 2 篇 biros george
  • 2 篇 wei ziping
  • 1 篇 cao sha
  • 1 篇 yu chenhan d.
  • 1 篇 salama paul
  • 1 篇 lu shuai
  • 1 篇 wang shuseng
  • 1 篇 zhao tong
  • 1 篇 cao xianbin
  • 1 篇 yu wenjian
  • 1 篇 wang yijie
  • 1 篇 qiu jiezhong
  • 1 篇 pereverzev serge...
  • 1 篇 zhu haiqi
  • 1 篇 mathe peter
  • 1 篇 guo tingbo

语言

  • 7 篇 英文
  • 1 篇 其他
检索条件"主题词=randomized matrix approximation"
8 条 记 录,以下是1-10 订阅
排序:
randomized matrix approximation to enhance regularized projection schemes in inverse problems
收藏 引用
INVERSE PROBLEMS 2020年 第8期36卷
作者: Lu, Shuai Mathe, Peter Pereverzev, Sergei, V Fudan Univ Key Lab Math Nonlinear Sci Shanghai Key Lab Contemporary Appl Math Shanghai 200433 Peoples R China Fudan Univ Sch Math Sci Shanghai 200433 Peoples R China Weierstrass Inst Appl Anal & Stochast Mohrenstr 39 D-10117 Berlin Germany Johann Radon Inst Altenberger Str 69 A-4040 Linz Austria
The authors consider a randomized solution to ill-posed operator equations in Hilbert spaces. In contrast to statistical inverse problems, where randomness appears in the noise, here randomness arises in the low-rank ... 详细信息
来源: 评论
Far-field compression for fast kernel summation methods in high dimensions
收藏 引用
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 2017年 第1期43卷 39-75页
作者: March, William B. Biros, George Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA
We consider fast kernel summations in high dimensions: given a large set of points in d dimensions (with d >> 3) and a pair-potential function (the kernel function), we compute a weighted sum of all pairwise ker... 详细信息
来源: 评论
Joint Massive MIMO CSI Estimation and Feedback via randomized Low-Rank approximation
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2022年 第7期71卷 7979-7984页
作者: Wei, Ziping Liu, Hongfu Li, Bin Zhao, Chenglin BUPT SICE Beijing 100876 Peoples R China
The acquisitionof channel state information at transmitter (CSIT) is crucial to attain the potential benefits of the frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. Traditional... 详细信息
来源: 评论
randomized Approximate Channel Estimator in Massive-MIMO Communication
收藏 引用
IEEE COMMUNICATIONS LETTERS 2020年 第10期24卷 2314-2318页
作者: Li, Bin Wang, Shuseng Zhang, Jun Cao, Xianbin Zhao, Chenglin Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing 100876 Peoples R China Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Stevens Inst Technol Dept Comp Sci Hoboken NJ 07030 USA Nanjing Univ Posts & Telecommun Jiangsu Key Lab Wireless Commun Nanjing 210003 Peoples R China Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China
Massive MIMO is considered as one key enabling technology in 5G communications. Although the high-quality channel state information (CSI) estimation is essential to improve the energy/spectrum efficiency of massive MI... 详细信息
来源: 评论
randomized Low-Rank approximation Based Massive MIMO CSI Compression
收藏 引用
IEEE COMMUNICATIONS LETTERS 2021年 第6期25卷 2004-2008页
作者: Wei, Ziping Li, Haozhan Liu, Hongfu Li, Bin Zhao, Chenglin Beijing Univ Posts & Telecommun BUPT Sch Informat & Commun Engn SICE Beijing 100876 Peoples R China
Massive multiple-input multiple-output (MIMO) is regarded as one enabling technique to improve channel capacity and energy/spectrum efficiency of 5G communications. To attain such potential benefits, accurate channel ... 详细信息
来源: 评论
Generalized matrix Local Low Rank Representation by Random Projection and Submatrix Propagation  23
Generalized Matrix Local Low Rank Representation by Random P...
收藏 引用
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Dang, Pengtao Zhu, Haiqi Guo, Tingbo Wan, Changlin Zhao, Tong Salama, Paul Wang, Yijie Cao, Sha Zhang, Chi Purdue Univ Indianapolis IN 46202 USA Indiana Univ Bloomington IN USA Indiana Univ Sch Med Indianapolis IN 46202 USA Purdue Univ W Lafayette IN USA Uber Inc Seattle WA USA
matrix low rank approximation is an effective method to reduce or eliminate the statistical redundancy of its components. Compared with the traditional global low rank methods such as singular value decomposition (SVD... 详细信息
来源: 评论
Approximating Element-Wise Functions of matrix with Improved Streaming randomized SVD  34
Approximating Element-Wise Functions of Matrix with Improved...
收藏 引用
34th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Xie, Yuyang Feng, Xu Zhang, Xizhi Qiu, Jiezhong Yu, Wenjian Tsinghua Univ BNRist Dept Comp Sci & Tech Beijing Peoples R China
The element-wise functions of a matrix are widely used in machine learning. For the applications with large matrices, efficiently computing the matrix-vector multiplication of matrix element-wise function without expl... 详细信息
来源: 评论
ASKIT: AN EFFICIENT, PARALLEL LIBRARY FOR HIGH-DIMENSIONAL KERNEL SUMMATIONS
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2016年 第5期38卷 S720-S749页
作者: March, William B. Xiao, Bo Yu, Chenhan D. Biros, George Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA Univ Texas Austin Sch Comp Sci Austin TX 78712 USA
Kernel-based methods are a powerful tool in a variety of machine learning and computational statistics methods. A key bottleneck in these methods is computations involving the kernel matrix, which scales quadratically... 详细信息
来源: 评论