咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 non-linear trans...
  • 1 篇 video coding
  • 1 篇 rate-distortion ...
  • 1 篇 deep image compr...
  • 1 篇 image coding
  • 1 篇 nonlinear distor...
  • 1 篇 signal processin...
  • 1 篇 bit rate
  • 1 篇 rate-distortion
  • 1 篇 vector quantizat...
  • 1 篇 variational auto...

机构

  • 1 篇 heinrich hertz i...
  • 1 篇 berlin inst tech...
  • 1 篇 heinrich hertz i...
  • 1 篇 free univ berlin...

作者

  • 1 篇 wiegand thomas
  • 1 篇 pientka sophie
  • 1 篇 schafer michael
  • 1 篇 schwarz heiko
  • 1 篇 pfaff jonathan
  • 1 篇 marpe detlev

语言

  • 1 篇 英文
检索条件"主题词=rate-distortion optimized encoding"
1 条 记 录,以下是1-10 订阅
排序:
rate-distortion optimized encoding for Deep Image Compression
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS
收藏 引用
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2021年 2卷 633-647页
作者: Schafer, Michael Pientka, Sophie Pfaff, Jonathan Schwarz, Heiko Marpe, Detlev Wiegand, Thomas Heinrich Hertz Inst Nachrichtentech Berlin GmbH Fraunhofer Inst Telecommun Video Commun & Applicat Dept D-10587 Berlin Germany Heinrich Hertz Inst Nachrichtentech Berlin GmbH Fraunhofer Inst Telecommun D-10587 Berlin Germany Free Univ Berlin Dept Math & Comp Sci D-14195 Berlin Germany Berlin Inst Technol Dept Elect Engn & Comp Sci D-10623 Berlin Germany
Deep-learned variational auto-encoders (VAE) have shown remarkable capabilities for lossy image compression. These neural networks typically employ non-linear convolutional layers for finding a compressible representa... 详细信息
来源: 评论