咨询与建议

限定检索结果

文献类型

  • 203 篇 会议
  • 165 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 370 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 264 篇 计算机科学与技术...
    • 80 篇 软件工程
    • 72 篇 电气工程
    • 60 篇 信息与通信工程
    • 40 篇 控制科学与工程
    • 15 篇 机械工程
    • 13 篇 材料科学与工程(可...
    • 12 篇 网络空间安全
    • 11 篇 电子科学与技术(可...
    • 6 篇 仪器科学与技术
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 3 篇 食品科学与工程(可...
    • 3 篇 安全科学与工程
  • 65 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 8 篇 工商管理
    • 3 篇 公共管理
  • 37 篇 理学
    • 20 篇 数学
    • 10 篇 物理学
    • 9 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 4 篇 化学
    • 3 篇 系统科学
  • 15 篇 教育学
    • 13 篇 教育学
    • 7 篇 心理学(可授教育学...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 5 篇 医学
  • 3 篇 文学
    • 2 篇 新闻传播学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 艺术学

主题

  • 370 篇 recommendation a...
  • 81 篇 collaborative fi...
  • 20 篇 deep learning
  • 19 篇 knowledge graph
  • 14 篇 recommender syst...
  • 11 篇 attention mechan...
  • 10 篇 data mining
  • 9 篇 collaborative fi...
  • 9 篇 machine learning
  • 9 篇 social network
  • 9 篇 recommendation s...
  • 8 篇 clustering
  • 8 篇 similarity
  • 8 篇 e-commerce
  • 7 篇 cold start
  • 7 篇 big data
  • 7 篇 feature extracti...
  • 6 篇 recommender syst...
  • 6 篇 similarity calcu...
  • 6 篇 personalized lea...

机构

  • 3 篇 state grid xinji...
  • 3 篇 nanjing univ pos...
  • 3 篇 state grid xinji...
  • 3 篇 ningbo city coll...
  • 3 篇 sun yat sen univ...
  • 3 篇 hunan univ coll ...
  • 3 篇 zhejiang busines...
  • 2 篇 school of artifi...
  • 2 篇 univ queensland ...
  • 2 篇 artillery comman...
  • 2 篇 northeastern uni...
  • 2 篇 guilin univ tech...
  • 2 篇 school of inform...
  • 2 篇 shaoyang univ pr...
  • 2 篇 fuzhou univ sch ...
  • 2 篇 tianjin universi...
  • 2 篇 donghua univ sch...
  • 2 篇 heilongjiang uni...
  • 2 篇 harbin engn univ...
  • 2 篇 henan univ sci &...

作者

  • 6 篇 yang yang
  • 4 篇 yu yonghong
  • 4 篇 zhang li
  • 4 篇 wang yong
  • 3 篇 wang xingwei
  • 3 篇 chang guiran
  • 3 篇 wang jian
  • 3 篇 shu fei
  • 3 篇 chen shuting
  • 3 篇 yin hang
  • 3 篇 dong xuetao
  • 3 篇 wang chang-dong
  • 3 篇 xie xiaolan
  • 3 篇 deng jiangzhou
  • 2 篇 jiang hui
  • 2 篇 feng chenyuan
  • 2 篇 mi zhenqiang
  • 2 篇 liu yunna
  • 2 篇 zhao changwei
  • 2 篇 zhou ningning

语言

  • 356 篇 英文
  • 11 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"主题词=recommendation algorithm"
370 条 记 录,以下是81-90 订阅
排序:
Research on An Extended SVD recommendation algorithm Based on User's Neighbor Model  7
Research on An Extended SVD Recommendation Algorithm Based o...
收藏 引用
7th IEEE International Conference on Software Engineering and Service Science (ICSESS)
作者: Pan, Mengyuan Yang, Yang Mi, Zhenqiang Univ Sci & Technol Beijing Dept Comp & Commun Engn Beijing Peoples R China
The fact that Singular Value Decomposition(SVD) algorithm can be used to reduce dimension and remove noise with good scalability and accuracy makes it been widely adopted in recommendation systems. However, the valuab... 详细信息
来源: 评论
LBS and Multidimensional Scoring Based recommendation algorithm  19
LBS and Multidimensional Scoring Based Recommendation Algori...
收藏 引用
3rd International Conference on Computer Science and Application Engineering (CSAE)
作者: Chen, Dongming Meng, Qinghua Wu, Xiaoguang Huang, Xinyu Wang, Dongqi Northeastern Univ Software Coll Shenyang Peoples R China
With the rapid development of the national economy, China's car ownership is increasing, so the demand and value of the automobile after-service market are constantly rising. How to integrate the existing automobi... 详细信息
来源: 评论
An Improved Collaborative Filtering recommendation algorithm  4
An Improved Collaborative Filtering Recommendation Algorithm
收藏 引用
4th IEEE International Conference on Big Data Analytics (ICBDA)
作者: Wang Hong-xia Beijing Youth Polit Coll Sch Informat Media & Art Beijing Peoples R China
Collaborative Filtering recommendation (CFR) is the earliest proposed and widest used method in recommendation system. It can not only find out what people are interested in at present but also mine out the implicit i... 详细信息
来源: 评论
Top-N Collaborative Filtering recommendation algorithm Based on Knowledge Graph Embedding  14th
Top-N Collaborative Filtering Recommendation Algorithm Based...
收藏 引用
14th International Conference on Knowledge Management in Organizations (KMO) - Synergistic Role of Knowledge Management in Organization
作者: Zhu, Ming Zhen, De-sheng Tao, Ran Shi, You-qun Feng, Xiang-yang Wang, Qian Donghua Univ Sch Comp Sci & Technol Shanghai 201620 Peoples R China
The traditional collaborative filtering recommendation algorithm only uses the item-user rating matrix without considering the semantic information of the item itself, resulting in a problem that the recommendation ac... 详细信息
来源: 评论
Matrix Factorization recommendation algorithm Incorporating Tag Factor  4
Matrix Factorization Recommendation Algorithm Incorporating ...
收藏 引用
IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC)
作者: Lu, Mengmeng Tian, Pei Commun Univ China Sch Informat Engn Beijing Peoples R China
Matrix factorization is a hot spot in the research of recommendation algorithms. Traditional matrix factorization algorithm only learns the user factor and the item factor from rating data, not fully considering the i... 详细信息
来源: 评论
Low-Rank and Sparse Cross-Domain recommendation algorithm  23rd
收藏 引用
23rd International Conference on Database Systems for Advanced Applications (DASFAA).
作者: Zhao, Zhi-Lin Huang, Ling Wang, Chang-Dong Huang, Dong Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China South China Agr Univ Coll Math & Informat Guangzhou Peoples R China
In this paper, we propose a novel Cross-Domain Collaborative Filtering (CDCF) algorithm termed Low-rank and Sparse Cross-Domain (LSCD) recommendation algorithm. Different from most of the CDCF algorithms which tri-fac... 详细信息
来源: 评论
Research on collaborative filtering recommendation algorithm based on user behavior characteristics
Research on collaborative filtering recommendation algorithm...
收藏 引用
International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE)
作者: Mao Jianjun Yunxiang Technol Co Ltd Nanjing Peoples R China
The recommendation system of the website can not only recommend products for users and save users the time spent searching for products, but also help practitioners reduce unnecessary sales activities and management e... 详细信息
来源: 评论
An Attention-based recommendation algorithm  17
An Attention-based Recommendation Algorithm
收藏 引用
IEEE Int Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking (ISPA/BDCloud/SocialCom/SustainCom)
作者: Chu, Yan Qi, Shuhao Yang, Yue Shan, Chenqi Wang, Lina Wang, Zhengkui Harbin Engn Univ Coll Comp Sci & Technol Harbin Peoples R China Singapore Inst Technol InfoComm Technol Singapore Singapore
Conventional recommendation algorithms adopt collaborative filtering approach to recommend items to one user through rating history from other users who share similar preferences. However, this method lacks of conside... 详细信息
来源: 评论
Graph Convolution recommendation algorithm Integrating Multi-relationship Preferences  20th
Graph Convolution Recommendation Algorithm Integrating Multi...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Su, Jing Zhao, Tianfeng Wu, Jianghong Shi, Peixuan Tianjin Univ Sci & Technol Sch Artificial Intelligence Tianjin 300457 Peoples R China
With the continuous development of Internet technology, existing data forms are becoming more and more complex. However, traditional recommendation algorithms have limitations when processing complex structured data. ... 详细信息
来源: 评论
AN IMPROVED recommendation algorithm VIA SOCIAL BEHAVIORS  12
AN IMPROVED RECOMMENDATION ALGORITHM VIA SOCIAL BEHAVIORS
收藏 引用
12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)
作者: Liu, Jin-Hu Zhu, Yu-Xiao Shi, Kun-Yu Univ Elect Sci & Technol China Web Sci Ctr Chengdu 611731 Peoples R China Univ Elect Sci & Technol China Sch Informat & Software Engn Chengdu 611731 Peoples R China
recommendation is an important problem in the traditional field of data mining. As a consequence, various kinds of algorithms have been proposed in the last few years to improve the recommendation performance. However... 详细信息
来源: 评论