A discriminative reference-based method for scene image categorization is presented in this letter. reference-based image classification approach combined with K-SVD is approved to be a simple, efficient, and effectiv...
详细信息
A discriminative reference-based method for scene image categorization is presented in this letter. reference-based image classification approach combined with K-SVD is approved to be a simple, efficient, and effective method for scene image categorization. It learns a subspace as a means of randomly selecting a reference-set and uses it to represent images. A good reference-set should be both representative and discriminative. More specifically, the reference-set subspace should well span the data space while maintaining low redundancy. To automatically select reference images, we adapt affinity propagation algorithm based on data similarity to gather a reference-set that is both representative and discriminative. We apply the discriminative reference-based method to the task of scene categorization on some benchmark datasets. Extensive experiment results demonstrate that the proposed scene categorization method with selected reference set achieves better performance and higher efficiency compared to the state-of-the-art methods.
reference-based image classification approach introduces a reference-set for both image representation and dictionary learning. It significantly reduces the dimensionality of represented images and shows outstanding p...
详细信息
ISBN:
(纸本)9781479923410
reference-based image classification approach introduces a reference-set for both image representation and dictionary learning. It significantly reduces the dimensionality of represented images and shows outstanding performance even with randomly selected reference images and simple distance measure. In this paper, we improve upon existing work with two major contributions. First, we show that a more representative reference-set contributes to better classification accuracy. To this end, we carefully adapt the K-means clustering algorithm in the feature space to select a distinguished reference-set. Second, in the image classification process, we propose to represent each image by measuring its betweenness centrality in a social network composed of the representative reference-set in each class, leading to a more coherent distance measure that considers the overall connectivity between the probe image and the reference-set. Extensive experiment results demonstrate that our proposed scheme achieves better performance than existing methods.
reference-based image classification approach introduces a reference-set for both image representation and dictionary learning. It significantly reduces the dimensionality of represented images and shows outstanding p...
详细信息
ISBN:
(纸本)9781479923427
reference-based image classification approach introduces a reference-set for both image representation and dictionary learning. It significantly reduces the dimensionality of represented images and shows outstanding performance even with randomly selected reference images and simple distance measure. In this paper, we improve upon existing work with two major contributions. First, we show that a more representative reference-set contributes to better classification accuracy. To this end, we carefully adapt the K-means clustering algorithm in the feature space to select a distinguished reference-set. Second, in the image classification process, we propose to represent each image by measuring its betweenness centrality in a social network composed of the representative reference-set in each class, leading to a more coherent distance measure that considers the overall connectivity between the probe image and the reference-set. Extensive experiment results demonstrate that our proposed scheme achieves better performance than existing methods.
暂无评论