咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 1 篇 noise suppressio...
  • 1 篇 noise reduction
  • 1 篇 detection
  • 1 篇 modulation recog...
  • 1 篇 decoding
  • 1 篇 modulation
  • 1 篇 residual shrinka...
  • 1 篇 feature extracti...
  • 1 篇 signal processin...
  • 1 篇 belief propagati...
  • 1 篇 training
  • 1 篇 convolutional ne...

机构

  • 1 篇 southern marine ...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ british col...

作者

  • 1 篇 zhang lin
  • 1 篇 zhang haotian
  • 1 篇 yang xiaoling
  • 1 篇 liu heng
  • 1 篇 cheng julian

语言

  • 1 篇 英文
检索条件"主题词=residual shrinkage convolutional neural network aided denoiser"
1 条 记 录,以下是1-10 订阅
排序:
Efficient residual shrinkage CNN denoiser Design for Intelligent Signal Processing: Modulation Recognition, Detection, and Decoding
收藏 引用
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2022年 第1期40卷 97-111页
作者: Zhang, Lin Yang, Xiaoling Liu, Heng Zhang, Haotian Cheng, Julian Sun Yat Sen Univ Sch Elect & Informat Technol Guangzhou 510006 Peoples R China Southern Marine Sci & Engn Guangdong Lab Zhuhai 519000 Peoples R China Univ British Columbia Sch Engn Kelowna BC V1V 1V7 Canada
The noises embedded in signals will degrade the signal processing quality. Traditional denoising algorithms might not work in practical systems since the statistical characteristics of noises might not be learned. To ... 详细信息
来源: 评论