咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 地球物理学
  • 2 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 3 篇 robust data proc...
  • 2 篇 faulty measureme...
  • 2 篇 outlier resistan...
  • 2 篇 feature extracti...
  • 2 篇 machine learning
  • 2 篇 sparsity
  • 2 篇 principal compon...
  • 1 篇 l1-norm
  • 1 篇 independent comp...
  • 1 篇 okinawa trough
  • 1 篇 hydrothermal ven...
  • 1 篇 l-1-norm
  • 1 篇 controlled-sourc...

机构

  • 1 篇 suny buffalo dep...
  • 1 篇 kyoto univ grad ...
  • 1 篇 japan agcy marin...
  • 1 篇 dept. of electri...
  • 1 篇 oregon state uni...
  • 1 篇 jamstec res & de...

作者

  • 1 篇 chamadia shubham
  • 1 篇 shubham chamadia
  • 1 篇 machiyama hideak...
  • 1 篇 kasaya takafumi
  • 1 篇 dimitris a. pado...
  • 1 篇 imamura naoto
  • 1 篇 pados dimitris a...
  • 1 篇 goto tada-nori

语言

  • 3 篇 英文
检索条件"主题词=robust data processing"
3 条 记 录,以下是1-10 订阅
排序:
robust data processing of noisy marine controlled-source electromagnetic data using independent component analysis
收藏 引用
EXPLORATION GEOPHYSICS 2018年 第1期49卷 21-29页
作者: Imamura, Naoto Goto, Tada-nori Kasaya, Takafumi Machiyama, Hideaki Oregon State Univ Coll Earth Ocean & Atmospher Sci 104 CEOAS Adm Bldg Corvallis OR 97331 USA Kyoto Univ Grad Sch Engn Nishikyo Ku C1-2-16 Kyotodaigaku Katsura Kyoto 6158540 Japan Japan Agcy Marine Earth Sci & Technol JAMSTEC Res & Dev Ctr Earthquake & Tsunami 2-15 Natsushima Yokosuka Kanagawa 2370061 Japan JAMSTEC Res & Dev Ctr Submarine Resources 2-15 Natsushima Yokosuka Kanagawa 2370061 Japan
data processing techniques are often used to estimate the noise-free response of marine controlled-source electromagnetic (CSEM) data and magnetotelluric transfer functions. We have implemented a new CSEM data process... 详细信息
来源: 评论
OPTIMAL SPARSE L1-NORM PRINCIPAL-COMPONENT ANALYSIS
OPTIMAL SPARSE L1-NORM PRINCIPAL-COMPONENT ANALYSIS
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Chamadia, Shubham Pados, Dimitris A. SUNY Buffalo Dept Elect Engn Buffalo NY 14260 USA
We present an algorithm that computes exactly (optimally) the S-sparse (1 <= S < D) maximum-L-1-norm-projection principal component of a real-valued data matrix X is an element of R-DXN that contains N samples o... 详细信息
来源: 评论
Optimal sparse L1-norm principal-component analysis
Optimal sparse L1-norm principal-component analysis
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Shubham Chamadia Dimitris A. Pados Dept. of Electrical Engineering The State Univ. of New York at Buffalo 14260 United States of America
We present an algorithm that computes exactly (optimally) the S-sparse (1≤S<;D) maximum-L_1-norm-projection principal component of a real-valued data matrix X ∈ R~(D×N) that contains N samples of dimension D... 详细信息
来源: 评论