咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 12 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 56 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 49 篇 工学
    • 27 篇 控制科学与工程
    • 19 篇 电气工程
    • 18 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
    • 1 篇 软件工程
  • 24 篇 管理学
    • 24 篇 管理科学与工程(可...
  • 6 篇 理学
    • 3 篇 化学
    • 3 篇 生物学
    • 2 篇 海洋科学
    • 1 篇 数学

主题

  • 56 篇 sampling-based a...
  • 26 篇 motion planning
  • 14 篇 path planning
  • 14 篇 optimal path pla...
  • 6 篇 rrt
  • 5 篇 rapidly-explorin...
  • 4 篇 random geometric...
  • 4 篇 text
  • 4 篇 asymptotic optim...
  • 4 篇 robotics
  • 3 篇 hledání cesty
  • 3 篇 experience-based...
  • 3 篇 prm
  • 3 篇 navigation
  • 3 篇 case-based reaso...
  • 3 篇 artificial intel...
  • 3 篇 pravděpodobnostn...
  • 3 篇 est
  • 2 篇 rapidly explorin...
  • 2 篇 feedback motion ...

机构

  • 4 篇 brno university ...
  • 2 篇 helwan univ fac ...
  • 2 篇 mit lab informat...
  • 2 篇 univ penn grasp ...
  • 2 篇 univ connecticut...
  • 1 篇 georgia inst tec...
  • 1 篇 tel aviv univ bl...
  • 1 篇 northwestern pol...
  • 1 篇 univ carlos iii ...
  • 1 篇 virginia tech de...
  • 1 篇 chinese acad sci...
  • 1 篇 tianjin univ tec...
  • 1 篇 stanford univ de...
  • 1 篇 univ shandong un...
  • 1 篇 nanjing univ sci...
  • 1 篇 univ michigan de...
  • 1 篇 northeastern uni...
  • 1 篇 nanjing univ sta...
  • 1 篇 univ toulouse cn...
  • 1 篇 jiangxi univ sci...

作者

  • 3 篇 abdelwahed musta...
  • 3 篇 solovey kiril
  • 3 篇 mohamed amr e.
  • 2 篇 wilson james p.
  • 2 篇 kumar vijay
  • 2 篇 pedrocchi nicola
  • 2 篇 gupta shalabh
  • 2 篇 jaffar mohamed k...
  • 2 篇 saleh mohamed al...
  • 2 篇 beschi manuel
  • 2 篇 otte michael
  • 2 篇 halperin dan
  • 2 篇 simeon thierry
  • 2 篇 chen yuan
  • 2 篇 cheng peng
  • 2 篇 karaman sertac
  • 2 篇 yu fujie
  • 2 篇 cortes juan
  • 2 篇 shen zongyuan
  • 2 篇 frazzoli emilio

语言

  • 56 篇 英文
检索条件"主题词=sampling-based algorithms"
56 条 记 录,以下是11-20 订阅
排序:
Anytime Informed Multi-Path Replanning Strategy for Complex Environments
收藏 引用
IEEE ACCESS 2023年 11卷 4105-4116页
作者: Tonola, Cesare Faroni, Marco Beschi, Manuel Pedrocchi, Nicola Univ Brescia Dipartimento Ingn Meccan & Ind I-25123 Brescia Italy Natl Res Council Italy CNR STIIMA Inst Intelligent Ind Technol Syst Adv Mfg I-20133 Milan Italy Univ Michigan Dept Robot Ann Arbor MI 48109 USA
In many real-world applications (e.g., human-robot collaboration), the environment changes rapidly, and the intended path may become invalid due to moving obstacles. In these situations, the robot should quickly find ... 详细信息
来源: 评论
An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints
收藏 引用
AUTONOMOUS ROBOTS 2023年 第3期47卷 281-297页
作者: Yu, Fujie Shang, Huaqing Zhu, Qilong Zhang, Hansheng Chen, Yuan Univ Shandong Univ Weihai Dept Mech Elect & Informat Engn Weihai 264209 Peoples R China
Quickly finding high-quality paths is of great significance for autonomous underwater vehicles (AUVs) in path planning problems. In this paper, we present a cylinder-based heuristic rapidly exploring random tree (Cyl-... 详细信息
来源: 评论
Accelerating sampling-based optimal path planning via adaptive informed sampling
收藏 引用
AUTONOMOUS ROBOTS 2024年 第2期48卷 6页
作者: Faroni, Marco Pedrocchi, Nicola Beschi, Manuel Politecn Milan Dipartimento Elettron Informaz & Bioingn Piazza Leonardo Vinci 32 I-20133 Milan Italy Natl Res Council Italy STIIMA CNR Inst Intelligent Ind Technol & Syst Via Alfonso Corti 12 I-20133 Milan Italy Univ Brescia Dipartimento Ingn Meccan & Ind Via Branze 38 I-25123 Brescia Italy
This paper improves the performance of RRT * \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upg... 详细信息
来源: 评论
Solving the motion planning problem using learning experience through case-based reasoning and machine learning algorithms
收藏 引用
AIN SHAMS ENGINEERING JOURNAL 2020年 第1期11卷 133-142页
作者: Abdelwahed, Mustafa F. Mohamed, Amr E. Saleh, Mohamed Aly Helwan Univ Fac Engn Dept Elect Commun & Comp 1 Sherif St Cairo 11792 Egypt
This article presents two novel methodologies for solving the motion planning problem through retained experience. Both approaches employ AI's case-based reasoning (CBR) technique. Case-based reasoning is an exper... 详细信息
来源: 评论
Cyl-IRRT*: Homotopy Optimal 3D Path Planning for AUVs by Biasing the sampling Into a Cylindrical Informed Subset
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2023年 第4期70卷 3985-3994页
作者: Yu, Fujie Chen, Yuan Univ Shandong Univ Dept Mech Elect & Informat Engn Weihai 264209 Peoples R China
In a complex 3-D environment, efficiently and safely reaching the target position is of great significance for autonomous underwater vehicles. This article proposes a cylinder-based informed rapid exploration random t... 详细信息
来源: 评论
Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments
收藏 引用
ROBOTICS AND AUTONOMOUS SYSTEMS 2015年 68卷 1-11页
作者: Qureshi, Ahmed Hussain Ayaz, Yasar NUST SMME Dept Robot & Artificial Intelligence Robot & Intelligent Syst Engn RISE Lab Islamabad 44000 Pakistan
The sampling-based motion planning algorithm known as Rapidly-exploring Random Trees (RRT) has gained the attention of many researchers due to their computational efficiency and effectiveness. Recently, a variant of R... 详细信息
来源: 评论
ATS-RRT*: an improved RRT* algorithm based on alternative paths and triangular area sampling
收藏 引用
ADVANCED ROBOTICS 2023年 第10期37卷 605-620页
作者: Zhang, Zhi-wei Jia, Yun-wei Su, Qi-qi Chen, Xiao-tong Fu, Bang-peng Tianjin Univ Technol Tianjin Key Lab Adv Mechatron Syst Design & Intell Tianjin Peoples R China Tianjin Univ Technol Natl Demonstrat Ctr Expt Mech & Elect Engn Educ Tianjin Peoples R China Tiandy Technol Co Ltd Tianjin Peoples R China
The Rapidly Exploring Random Tree Star (RRT*) is a probabilistically complete algorithm. It is recognized as a better path planning algorithm, but its path quality and path planning speed still have room for improveme... 详细信息
来源: 评论
Improving Solution Quality for Experience-based Framework Through Clustering algorithms
收藏 引用
IEEE ACCESS 2019年 7卷 106720-106725页
作者: Abdelwahed, Mustafa F. Mohamed, Amr E. Saleh, Mohamed Aly Helwan Univ Fac Engn Dept Elect Commun & Comp Cairo 11792 Egypt
This paper presents an extension for the current developed experience-based frameworks. The current experience-based scheme depends on executing two parallel threads;one tries to solve the problem using traditional ap... 详细信息
来源: 评论
Deterministic sampling-based motion planning: Optimality, complexity, and performance
收藏 引用
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2018年 第1期37卷 46-61页
作者: Janson, Lucas Ichter, Brian Pavone, Marco Stanford Univ Dept Stat Stanford CA 94305 USA Stanford Univ Dept Aeronaut & Astronaut William F Durand BldgRm 261 496 Lomita Mall Stanford CA 94305 USA
Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and the rapidly exploring random tree (RRT) algorithms, represent one of the most successful approaches to robotic motion planning, due ... 详细信息
来源: 评论
PQ-RRT*: An improved path planning algorithm for mobile robots
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 152卷 113425-113425页
作者: Li, Yanjie Wei, Wu Gao, Yong Wang, Dongliang Fan, Zhun South China Univ Technol Sch Automat Sci & Engn Guangzhou 510641 Guangdong Peoples R China Shantou Univ Dept Elect & Informat Engn Shantou 515063 Peoples R China Shantou Univ Key Lab Digital Signal & Image Proc Guangdong Pro Shantou 515063 Peoples R China Shantou Univ Key Lab Intelligent Mfg Technol Minist Educ Shantou 515063 Guangdong Peoples R China Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 43003 Peoples R China
During the last decade, sampling-based algorithms for path planning have gained considerable attention. The RRT*, a variant of RRT (rapidly-exploring random trees), is of particular concern to researchers due to its a... 详细信息
来源: 评论