The main goal of the research presented in this paper was to estimate the performance of applying neural networks trained with the usage of a chaotic model, that may serve as hashing functions. The Lorenz Attractor ch...
详细信息
ISBN:
(纸本)9783031087547;9783031087530
The main goal of the research presented in this paper was to estimate the performance of applying neural networks trained with the usage of a chaotic model, that may serve as hashing functions. The Lorenz Attractor chaotic model was used for training data preparation, and Scaled Conjugate Gradient was used as a training algorithm. Networks consisted of two layers: a hidden layer with sigmoid neurons and an output layer with linear neurons. The method of bonding the input message with chaotic formula is presented. Created networks could return 256 or 512 bits of hash, however, this parameter can be easily adjusted before the training process. The performance analysis of networks is discussed (that is the time of hash computation) in comparison with popular standards SHA-256 and SHA-512 under the MATLAB environment. Further research may include analysis of networks' training parameters (like mean squared error or gradient) or analysis of results of the statistical tests performed on networks output. The presented solution may be used as a security algorithm complementary to a certificated one (for example for additional data integrity checking).
The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the security perspective, CC systems have to offer solutions that fulfil international standards...
详细信息
The significant benefits of cloud computing (CC) resulted in an explosion of their usage in the last several years. From the security perspective, CC systems have to offer solutions that fulfil international standards and regulations. In this paper, we propose a model for a hash function having a scalable output. The model is based on an artificial neural network trained to mimic the chaotic behaviour of the Mackey-Glass time series. This hashing method can be used for data integrity checking and digital signature generation. It enables constructing cryptographic services according to the user requirements and time constraints due to scalable output. Extensive simulation experiments are conduced to prove its cryptographic strength, including three tests: a bit prediction test, a series test, and a Hamming distance test. Additionally, flexible hashing function performance tests are run using the CloudSim simulator mimicking a cloud with a global scheduler to investigate the possibility of idle time consumption of virtual machines that may be spent on the scalable hashing protocol. The results obtained show that the proposed hashing method can be used for building light cryptographic protocols. It also enables incorporating the integrity checking algorithm that lowers the idle time of virtual machines during batch task processing.
暂无评论