咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 电气工程
    • 1 篇 计算机科学与技术...
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 3 篇 scalable tensor ...
  • 2 篇 computer science
  • 2 篇 big data
  • 2 篇 computational mo...
  • 1 篇 computer archite...
  • 1 篇 multi-modal accu...
  • 1 篇 edge/fog computi...
  • 1 篇 cyber-physical-s...
  • 1 篇 markov processes
  • 1 篇 tensor-train bas...
  • 1 篇 tensors
  • 1 篇 tensor-train bas...
  • 1 篇 predictive model...
  • 1 篇 tensor-train (tt...
  • 1 篇 tensile stress
  • 1 篇 multimodal predi...
  • 1 篇 multivariate mar...
  • 1 篇 tensor-train (tt...
  • 1 篇 prediction algor...
  • 1 篇 high-order domin...

机构

  • 3 篇 jiujiang univ sc...
  • 3 篇 huazhong univ sc...
  • 3 篇 zhejiang univ te...
  • 3 篇 st francis xavie...
  • 1 篇 arizona state un...
  • 1 篇 chongqing univ c...
  • 1 篇 tencent inc dept...
  • 1 篇 huazhong univ sc...
  • 1 篇 hainan univ sch ...
  • 1 篇 shenzhen huazhon...

作者

  • 3 篇 ding jihong
  • 3 篇 liu huazhong
  • 2 篇 yang laurence t.
  • 2 篇 guo yimu
  • 1 篇 xie xia
  • 1 篇 deng anyuan
  • 1 篇 yang laurence ti...
  • 1 篇 wang zhi-jie
  • 1 篇 yao tong
  • 1 篇 yau stephen s.

语言

  • 3 篇 英文
检索条件"主题词=scalable tensor computations"
3 条 记 录,以下是1-10 订阅
排序:
scalable tensor-Train-Based tensor computations for Cyber-Physical-Social Big Data
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2020年 第4期7卷 873-885页
作者: Liu, Huazhong Yang, Laurence T. Ding, Jihong Guo, Yimu Xie, Xia Wang, Zhi-Jie Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Jiujiang Univ Sch Informat Sci & Technol Jiujiang 332005 Peoples R China St Francis Xavier Univ Dept Comp Sci Antigonish NS B2G 2W5 Canada Zhejiang Univ Technol Sch Educ Sci & Technol Hangzhou 310014 Peoples R China Tencent Inc Dept Social Network Applicat Shenzhen 518052 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China
tensor-based big data analysis approaches are effectively exploited to handle multisource and heterogeneous cyber-physical-social big data generated from diverse spaces. However, the curse of dimensionality seriously ... 详细信息
来源: 评论
tensor-Train-Based High-Order Dominant Eigen Decomposition for Multimodal Prediction Services
收藏 引用
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 2021年 第1期68卷 197-211页
作者: Liu, Huazhong Yang, Laurence Tianruo Ding, Jihong Guo, Yimu Yau, Stephen S. Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518000 Peoples R China Jiujiang Univ Sch Informat Sci & Technol Jiujiang 332005 Peoples R China St Francis Xavier Univ Dept Comp Sci Antigonish NS B2G 2W5 Canada Zhejiang Univ Technol Sch Educ Sci & Technol Hangzhou 310014 Peoples R China Arizona State Univ Dept Comp Sci & Engn Tempe AZ 85281 USA
By leveraging neoteric analytical techniques associated with big data, numerous new data-focused computation and service models have flourished in service computing systems. Accurate future predictions based on tensor... 详细信息
来源: 评论
tensor-Train-Based Higher Order Dominant Z-Eigen Decomposition for Multi-Modal Prediction and Its Cloud/Edge Implementation
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2021年 第2期8卷 1353-1366页
作者: Liu, Huazhong Yang, Laurence T. Yao, Tong Ding, Jihong Deng, Anyuan Hainan Univ Sch Comp Sci & Cyberspace Secur Sch Cryptogram Haikou 570208 Hainan Peoples R China St Francis Xavier Univ Dept Comp Sci Antigonish NS B2G 2W5 Canada Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China Zhejiang Univ Technol Sch Educ Sci & Technol Hangzhou 310014 Peoples R China Jiujiang Univ Sch Informat Sci & Technol Jiujiang 332005 Peoples R China
Accurate multi-modal predictions can vigorously support people's wise decisions. Predicting the future by leveraging eigentensor based multivariate Markov model or Z-eigenvector based multi-order Markov model has ... 详细信息
来源: 评论